Harran Ovası Tarım Arazileri Etrafında Bulunan Urfa Taşı’nın Metilen Mavisi Boyar Maddesi Adsorpsiyonu

Urfa taşı, düşük maliyetli, yerel olarak bol bulunan, yüksek verime sahip ve çevreye duyarlı bir adsorbent olarak kullanılabileceği düşünülerek, atık sudan boyaları uzaklaştırmanın güncel pahalı yöntemlerine alternatif bir adsorbent olarak incelenmiştir. Bu çalışma ile Urfa taşının sentetik olarak hazırlanmış atık sulardan metilen mavisi (MB) boyası uzaklaştırma potansiyeli araştırılmıştır. Laboratuvar deneyleri kesikli olarak yürütülmüştür. Urfa taşının MB sorpsiyonu performansı, dozaj (0.1, 0.25, 0.5 ve 1 g) ve başlangıç konsantrasyonları (5, 10, 20, 30 ve 40 mg L-1) ile hesaplanmıştır. Deneyler farklı pH (3, 5, 7, 8, 8.98 ve 11) değerleri için de gerçekleştirilmiştir. Adsorpsiyon oranlarının hesaplanması için iki kinetik model (yalancı ikinci mertebeden ve por difüzyonu) kullanılmıştır. Ayrıca Lagergren eşitliği ile adsorpsiyonun mekanizması da incelenmiştir. Deneysel veriler, Langmuir, Freundlich ve Tempkin izoterm modelleri kullanılarak analiz edilmiştir. Elde edilen neticede Metilen mavisi boyasının Urfa Taşı üzerinde adsorpsiyonunun Langmuir izotermine tam uyum gösterdiği, kısmen Tempkin izotermine uyduğunu göstermiştir. Yalancı ikinci mertebe kinetiği ve por difüzyonu mekanizmasının adsorpsiyonun kinetiğine uygulanabileceği ve intrapartiküler difüzyon hızının etkili mekanizma olduğu anlaşılmıştır. Adsorpsiyonun kendiliğinden meydana gelme eğiliminde olduğu, Urfa taşının metilen mavisine doğal ilgisinin bulunduğu tespit edilmiştir. Urfa taşının doğal, ekonomik ve çevreci bir adsorbent olarak kullanılabileceği anlaşılmıştır.

Adsorption of Methylene Blue Dye on Urfa Stone Obtained Around at Agriculture Land in Harran Plain

Urfa stone has been investigated as an alternative to current expensive methods of removing dyestuffs from wastewater, considering it can be used as a low cost, locally abundant, high-yielding and environmentally sensitive adsorbent. In this study, methylene blue (MB) dye removal potential of Urfa stone from the synthetically prepared wastewater, was investigated. Laboratory experiments were carried out as batches. Urfa Stone’s MB sorption performance was calculated with dosage (0.1, 0.25, 0.5 and 1 g) and initial concentrations (5, 10, 20, 30 and 40 mg L-1 ). Experiments were also performed for different pH values (3, 5, 7, 8, 8.98 and 11). Two kinetic models (pseudo second - order and pore diffusion) were used to calculate the adsorption ratios. The mechanism of adsorption by Lagergren equilibrium was also studied. Experimental data were analyzed using Langmuir, Freundlich and Tempkin isotherm models. As a result, it was understood that the adsorption of Methylene blue dye on the Urfa Stone was in full agreement with the Langmuir isotherm and ii partial agreement with the Tempkine isotherm. It was understood that the pseudo second - order kinetics and pore diffusion mechanisms can be applied to the kinetics of adsorption and the intraparticular diffusion rate was the effective mechanism. It was observed that the adsorption tends to occur spontaneously and the Urfa stone has a natural affinity to methylene blue dye. It has been understood that Urfa stone can be used as a natural, economical and environmentally friendly adsorbent.

___

  • Al-Ghouti, M.A., Khraisheh, M.A., Ahmad, M.N., Allen, S., 2009. Adsorption behaviour of methylene blue onto Jordanian diatomite: A kinetic study. Journal of Hazardous Materials, 165(1): 589-598.
  • ALzaydien, A.S., 2009. Adsorption of methylene blue from aqueous solution onto a low-cost natural Jordanian Tripoli. American Journal of Applied Science, 6(6): 1047-1058.
  • Atkins, P., De Paula, J., 2006. Physical Chemistry 8th Edn., Oxford University Press, Oxford, pp. 163-165.
  • Berneth, H., 2003. Cationic dyes. In Ullamnn’s Encyclopedia of Industrial Chemistry. 6th Edn., Wiley-VCH, Weinheim, Germany, pp. 585-591.
  • Bhattacharyya, K.G., Sharma A., 2005. Kinetics and thermodynamics of methylene blue adsorption on Neem (Azadirachtaindica) leaf powder. Dyes Pigments, 65: 51-59.
  • Cengiz, S., Cavas, L., 2008. Removal of methylene blue by invasive marine seaweed: Caulerpa racemosa var. cylindracea. Bioresource Technology, 99(7): 2357-2363.
  • Chiou, M.S., Chuang, G.S., 2006. Competitive adsorption of dye metanil yellow and RB15 in acid solutions on chemically cross-linked chitosan beads. Chemosphere, 62(5): 731-740.
  • Chongrak, K., Eric, H., Noureddine, A., Jean, P.G., 1998. Application of methylene blue adsorption to cotton fiber specific surface area measurement: Part I. Methodology. The Journal of Cotton Science, 2: 164-173.
  • Dawood, S., Sen, T.K., 2012. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water Research, 46(6): 1933-1946.
  • Dawood, S., Sen, T.K., 2014. Review on dye removal from its aqueous solution into alternative cost effective and non-conventional adsorbents. Journal of Chemical and Process Engineering, 1(1): 1-7.
  • Dawood, S., Sen, T.K., Phan, C., 2016. Adsorption removal of Methylene Blue (MB) dye from aqueous solution by bio-char prepared from Eucalyptus sheathiana bark: kinetic, equilibrium, mechanism, thermodynamic and process design. Desalination and Water Treatment, 57(59): 28964-28980.
  • Deng, H., Lu, J., Li, G., Zhang, G., Wang, X., 2011. Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chemical Engineering Journal, 172(1): 326-334.
  • Dilekoğlu, M.F., 2003. Beyaz Urfa taşının sulu ortamda Cd2+ ve Zn2+ ağır metallerini adsorplama kinetiğinin araştırılması. Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • El-Latif, M.A., Ibrahim, A.M., El-Kady, M.F., 2010. Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using biopolymer oak sawdust composite. Journal of American Science, 6(6): 267-283.
  • Franca, A.S., Oliveira, L.S., Ferreira, M.E., 2009. Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination, 249(1): 267-272.
  • Freundlich, H.M.F., 1906. Über die adsorption in Lösungen. Zeitschrift für Physikalische Chemie, 57(A): 385-470.
  • Gong, R., Li, M., Yang, C., Sun, Y., Chen, J., 2005. Removal of cationic dyes from aqueous solution by adsorption on peanut hull. Journal of Hazardous Materials, 121(1-3): 247-250.
  • Gupta, V.K., Ali, I., Saini, V.K., 2004. Removal of rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry waste. Industrial & Engineering Chemistry Research, 43(7): 1740-1747.
  • Hameed, B.H., Din, A.M., Ahmad, A.L., 2007. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. Journal of Hazardous Materials, 141(3): 819-825.
  • Hameed, B.H., Ahmad, A.A., 2009. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. Journal of hazardous materials, 164(2): 870-875.
  • Han, R., Zhang, J., Han, P., Wang, Y., Zhao, Z., Tang, M., 2009. Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite. Chemical Engineering Journal, 145(3): 496-504.
  • Hassan, A.A., Hassan, Z.A.S., 2013. Methylene blue removal from aqueous solution by adsorption on eggshell BED. Euphrates Journal of Agriculture Science, 5(2): 11-23.
  • Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process Biochemistry, 34(5): 451-465.
  • Hong, Z., Han, L., Ma, H., Zheng, Y., Zhang, H., Liu, D., Liang, S., 2008. Adsorption characteristics of ammonium ion by zeolite 13X. Journal of Hazardous Materials, 158(2): 577-584.
  • Jaynes, W.F., Boyd, S.A., 1991. Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water. Clays and Clay Minerals, 39(4): 428-436.
  • Kristanti, R.A., Kamisan, M.K.A., Hadibarata, T., 2016. Treatability of methylene blue solution by adsorption process using Neobalanocarpus hepmii and Capsicum annuum. Water, Air and Soil Pollution, 227(5): 134-140.
  • Lagergren, S., 1898. Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar, 24: 1-39.
  • Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9): 1361-1402.
  • Lata, H., Garg, V.K., Gupta, R.K., 2007. Removal of a basic dye from aqueous solution by adsorption using Parthenium hysterophorus: An agricultural waste. Dyes and Pigments, 74(3): 653-658.
  • Malash, G.F., El-Khaiary, M.I., 2010. Methylene blue adsorption by the waste of Abu-Tartour phosphate rock. Journal of Colloid and Interface Science, 348(2): 537-545.
  • McKay, G., 1982. Adsorption of dyestuffs from aqueous solutions with activated carbon I: Equilibrium and batch contact‐time studies. Journal of Chemical Technology and Biotechnology, 32(7‐12): 759-772.
  • McKay, G., Ho, Y.S., Ng, J.C.Y., 1999. Biosorption of copper from waste waters: a review. Separation and Purification Methods, 28(1): 87-125.
  • Michelsen, D.L., Gideon, J.A., Griffith, G.P., Pace, J.E., Kutat, H.L., 1975. Removal of Soluble Mercury from Waste Water by Complexing Techmiques. Bulletins, Virginia Water Resources Research Center, Virginia Polytechnic Institute and State University.
  • Namasivayam, C., Muniasamy, N., Gayatri, K., Rani, M., Ranganathan, K., 1996. Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresource Technology, 57(1): 37-43.
  • Nassar, M.M., Magdy, Y.H., 1997. Removal of different basic dyes from aqueous solutions by adsorption on palm-fruit bunch particles. Chemical Engineering Journal, 66(3): 223-226.
  • Oliveira, L.S., Franca, A.S., Alves, T.M., Rocha, S.D., 2008. Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters. Journal of Hazardous Materials, 155(3): 507-512.
  • Poots, V.J.P., McKay, G., Healy, J.J., 1978. Removal of basic dye from effluent using wood as an adsorbent. Journal (Water Pollution Control Federation), 50(5): 926-935.
  • Ramasamy, V., Anandalakshmi, K., 2008. The determination of kaolinite clay content in limestones of western Tamil Nadu by methylene blue adsorption using UV–vis spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 70(1): 25-29.
  • Salem, I.A., El-Maazawi, M.S., 2000. Kinetics and mechanism of color removal of methylene blue with hydrogen peroxide catalyzed by some supported alumina surfaces. Chemosphere, 41(8): 1173-1180.
  • Singh, D.B., Rupainwar, D.C., Prasad, G., Jayaprakas, K.C., 1998. Studies on the Cd(II) removal from water by adsorption. Journal of Hazardous Materials, 60(1): 29-40.
  • Stephenson, R.J., Sheldon, J.B., 1996. Coagulation and precipitation of a mechanical pulping effluent, I. Removal of carbon and turbidity. Water Research, 30(4): 781-792.
  • Tacon, A.G.J., Forster, I.P., 2003. Aquafeeds and the environment: Policy implications. Aquaculture, 226(1-4): 181-189.
  • Tempkin, M.J., Pyzhev, V., 1940. Recent modifications to Langmuir isotherms. Acta Physicochimica URSS, 12: 217-222.
  • Wang, S., Boyjoo, Y., Choueib, A., Zhu, Z.H., 2005. Removal of dyes from aqueous solution using fly ash and red mud. Water Research, 39(1): 129-138.
  • Weber, W.J., Morris, J.C., 1963. Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2): 31-60.
  • Weng, C.H., Pan, Y.F., 2006. Adsorption characteristics of methylene blue from aqueous solution by sludge ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 274(1): 154-162.
  • Yagub, M.T., Sen, T.K., Afroze, S., Ang, H.M., 2014. Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209: 172-184.
Türkiye Tarımsal Araştırmalar Dergisi-Cover
  • ISSN: 2148-2306
  • Başlangıç: 2014
  • Yayıncı: SİİRT ÜNİVERSİTESİ ZİRAAT FAKÜLTESİ