Boyun Ağrısı Tedavisinde Sanal Gerçeklik Uygulamaları

Boyun ağrısı, bel ağrısından sonra ikinci sırada en çok görülen muskuloskeletal patolojidir. Kronik boyun ağrısı, bireyin davranışlarını, yaşam kalitesini, aile ve meslek yaşantısını önemli ölçüde etkileyen, hoş olmayan, duyusal ve duygusal bir deneyimdir ve her üç yetişkinden ikisinin hayatının bir döneminde boyun ağrısı yaşadığı bilinmektedir. Sanal gerçeklik (Virtual Reality-VR), kullanıcıların sanal mekanlarda gezinme ve bu mekanlardaki nesneleri manipüle etme izlenimine sahip olduğu yapay bir dünya yaratmak için kullanılan bir bilgi işlem sistemi olarak tanımlanır. VR teknolojileri, sanal bir ortamda fiziksel olarak bulunma algısı olarak tanımlanan imersiyon kavramı ve bu kavramın farklı alt tipleriyle sınıflandırılmaktadır. İmersiyon derecelerine göre sanal gerçeklik teknolojileri immersive, semi-immersive, non-immersive olarak üç kategoride incelenmektedir. Sanal gerçeklik teknolojilerinin ağrı üzerine temel etki mekanizması distraksiyon kavramıyla açıklanmaktadır. Kronik boyun ağrısı rehabilitasyonunda son yıllarda sıklıkla kullanılmaya başlanan VR teknolojilerinin, ağrı, disabilite, postural kontrol ve denge, kinematik değişimler üzerine olumlu etkileri yapılan çalışmalarda bildirilmiştir. Bu derlemenin amacı, sanal gerçeklik teknolojilerinin kronik boyun ağrısı tedavisinde kullanım alanları ve amaçları, tedavi programlama için optimal doz ve sürenin belirlenmesi ve uygulamanın olası yan etkileri hakkında bilgi vererek ilerleyen çalışmalar için yol gösterici olmasıdır.

Virtual Reality Applications in Neck Pain Treatment

Neck pain is the second most common musculoskeletal pathology after low back pain. Chronic neck pain is an unpleasant, sensory and emotional experience that significantly affects the behavior, quality of life, family and professional life of the individual, and it is known that two out of every three adults experience neck pain at some point in their lives. Virtual reality (VR) is defined as a computing system used to create an artificial world where users have the impression of navigating and manipulating objects in virtual spaces. VR technologies are classified by the concept of immersion, which is defined as the perception of being physically present in a virtual environment, and different subtypes of this concept. According to their immersion degrees, virtual reality technologies are examined in three categories as immersive, semi-immersive and non-immersive. The main mechanism of action of virtual reality technologies on pain is explained by the concept of distraction. The positive effects of VR technologies, which have been used frequently in the rehabilitation of chronic neck pain in recent years, on pain, disability, postural control and balance, and kinematic changes have been reported in studies. The purpose of this review is to provide information about the areas and purposes of use of virtual reality technologies in the treatment of chronic neck pain, the determination of the optimal dose and duration for treatment programming, and the possible side effects of the application, and to guide further studies.

___

  • 1. Ferrari R, Russell AS. Regional musculoskeletal conditions: neck pain. Best practice & research Clinical rheumatology. 2003;17(1):57-70.
  • 2. Hoy D, March L, Woolf A, Blyth F, Brooks P, Smith E, et al. The global burden of neck pain: estimates from the global burden of disease 2010 study. Annals of the rheumatic diseases. 2014;73(7):1309-15.
  • 3. Côté P, van der Velde G, Cassidy JD, Carroll LJ, Hogg-Johnson S, Holm LW, et al. The burden and determinants of neck pain in workers: results of the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders. Spine (Phila Pa 1976). 2008;33(4 Suppl):S60-74.
  • 4. Elbinoune I, Amine B, Shyen S, Gueddari S, Abouqal R, Hajjaj-Hassouni N. Chronic neck pain and anxiety-depression: prevalence and associated risk factors. The Pan African medical journal. 2016;24:89.
  • 5. Haldeman S, Carroll L, Cassidy JD, Schubert J, Nygren A. The Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders: executive summary. Spine (Phila Pa 1976). 2008;33(4 Suppl):S5-7.
  • 6. Kim R, Wiest C, Clark K, Cook C, Horn M. Identifying risk factors for first-episode neck pain: A systematic review. Musculoskeletal science & practice. 2018;33:77-83.
  • 7. Kazeminasab S, Nejadghaderi SA, Amiri P, Pourfathi H, Araj-Khodaei M, Sullman MJ, et al. Neck pain: global epidemiology, trends and risk factors. BMC Musculoskeletal Disorders. 2022;23(1):1-13.
  • 8. Genebra C, Maciel NM, Bento TPF, Simeão S, Vitta A. Prevalence and factors associated with neck pain: a population-based study. Brazilian journal of physical therapy. 2017;21(4):274-80.
  • 9. Hogg-Johnson S, van der Velde G, Carroll LJ, Holm LW, Cassidy JD, Guzman J, et al. The burden and determinants of neck pain in the general population: results of the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders. Spine (Phila Pa 1976). 2008;33(4 Suppl):S39-51.
  • 10. McLean SM, May S, Klaber-Moffett J, Sharp DM, Gardiner E. Risk factors for the onset of non-specific neck pain: a systematic review. Journal of epidemiology and community health. 2010;64(7):565-72.
  • 11. Tejera DM, Beltran-Alacreu H, Cano-de-la-Cuerda R, Leon Hernández JV, Martín-Pintado-Zugasti A, Calvo-Lobo C, et al. Effects of Virtual Reality versus Exercise on Pain, Functional, Somatosensory and Psychosocial Outcomes in Patients with Non-specific Chronic Neck Pain: A Randomized Clinical Trial. International journal of environmental research and public health. 2020;17(16).
  • 12. Burbules NC. Rethinking the Virtual. In: Weiss J, Nolan J, Hunsinger J, Trifonas P, editors. The International Handbook of Virtual Learning Environments. Dordrecht: Springer Netherlands; 2006. p. 37-58.
  • 13. Mujber TS, Szecsi T, Hashmi MSJ. Virtual reality applications in manufacturing process simulation. Journal of Materials Processing Technology. 2004;155-156:1834-8.
  • 14. Lee SH, Jung HY, Yun SJ, Oh BM, Seo HG. Upper Extremity Rehabilitation Using Fully Immersive Virtual Reality Games With a Head Mount Display: A Feasibility Study. PM & R : the journal of injury, function, and rehabilitation. 2020;12(3):257-62.
  • 15. Jack D, Boian R, Merians AS, Tremaine M, Burdea GC, Adamovich SV, et al. Virtual reality-enhanced stroke rehabilitation. IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society. 2001;9(3):308-18.
  • 16. Reid DT. Benefits of a virtual play rehabilitation environment for children with cerebral palsy on perceptions of self-efficacy: a pilot study. Pediatric rehabilitation. 2002;5(3):141-8.
  • 17. Haik J, Tessone A, Nota A, Mendes D, Raz L, Goldan O, et al. The use of video capture virtual reality in burn rehabilitation: the possibilities. Journal of burn care & research : official publication of the American Burn Association. 2006;27(2):195-7.
  • 18. Mirelman A, Maidan I, Herman T, Deutsch JE, Giladi N, Hausdorff JM. Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson's disease? The journals of gerontology Series A, Biological sciences and medical sciences. 2011;66(2):234-40.
  • 19. Albiol-Perez S, Forcano-García M, Muñoz-Tomás M, Manzano-Fernández P, Solsona-Hernández S, Mashat M, et al. A novel virtual motor rehabilitation system for Guillain-barre syndrome. Methods of Information in Medicine. 2015;54(02):127-34.
  • 20. Fulk GD. Locomotor training and virtual reality-based balance training for an individual with multiple sclerosis: a case report. Journal of neurologic physical therapy : JNPT. 2005;29(1):34-42.
  • 21. Kramer M, Honold M, Hohl K, Bockholt U, Rettig A, Elbel M, et al. Reliability of a new virtual reality test to measure cervicocephalic kinaesthesia. Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology. 2009;19(5):e353-61.
  • 22. Sarig-Bahat H, Weiss PL, Laufer Y. Cervical motion assessment using virtual reality. Spine (Phila Pa 1976). 2009;34(10):1018-24.
  • 23. Sarig-Bahat H, Weiss PL, Laufer Y. Neck pain assessment in a virtual environment. Spine (Phila Pa 1976). 2010;35(4):E105-12.
  • 24. Sarig Bahat H, Takasaki H, Chen X, Bet-Or Y, Treleaven J. Cervical kinematic training with and without interactive VR training for chronic neck pain - a randomized clinical trial. Manual therapy. 2015;20(1):68-78.
  • 25. Harvie DS, Broecker M, Smith RT, Meulders A, Madden VJ, Moseley GL. Bogus visual feedback alters onset of movement-evoked pain in people with neck pain. Psychological science. 2015;26(4):385-92.
  • 26. Harvie DS, Smith RT, Moseley GL, Meulders A, Michiels B, Sterling M. Illusion-enhanced Virtual Reality Exercise for Neck Pain: A Replicated Single Case Series. The Clinical journal of pain. 2020;36(2):101-9.
  • 27. Kim W, Jeon I, Moon J. NexerciseVR: A VR-based Exergame for Neck Exercise. Available at SSRN 3448344. 2017.
  • 28. Mihajlovic Z, Popovic S, Brkic K, Cosic K. A system for head-neck rehabilitation exercises based on serious gaming and virtual reality. Multimedia Tools and Applications. 2018;77(15):19113-37.
  • 29. I R, M R, S E, S K, A RZ. A Novel Virtual Reality Technique (Cervigame®) Compared to Conventional Proprioceptive Training to Treat Neck Pain: A Randomized Controlled Trial. Journal of biomedical physics & engineering. 2019;9(3):355-66.
  • 30. Hoffman HG, Doctor JN, Patterson DR, Carrougher GJ, Furness TA, 3rd. Virtual reality as an adjunctive pain control during burn wound care in adolescent patients. Pain. 2000;85(1-2):305-9.
  • 31. Wiederhold BK, Gao K, Sulea C, Wiederhold MD. Virtual reality as a distraction technique in chronic pain patients. Cyberpsychology, behavior and social networking. 2014;17(6):346-52.
  • 32. Jansen-Kosterink SM, Huis In 't Veld RM, Schönauer C, Kaufmann H, Hermens HJ, Vollenbroek-Hutten MM. A Serious Exergame for Patients Suffering from Chronic Musculoskeletal Back and Neck Pain: A Pilot Study. Games for health journal. 2013;2(5):299-307.
  • 33. Tabor A, Thacker MA, Moseley GL, Körding KP. Pain: a statistical account. PLoS computational biology. 2017;13(1):e1005142.
  • 34. McCaul KD, Malott JM. Distraction and coping with pain. Psychological bulletin. 1984;95(3):516.
  • 35. Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B, et al. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain--an fMRI analysis. Pain. 2004;109(3):399-408.
  • 36. Hoffman HG, Richards TL, Van Oostrom T, Coda BA, Jensen MP, Blough DK, et al. The analgesic effects of opioids and immersive virtual reality distraction: evidence from subjective and functional brain imaging assessments. Anesthesia and analgesia. 2007;105(6):1776-83, table of contents.
  • 37. Gold JI, Belmont KA, Thomas DA. The neurobiology of virtual reality pain attenuation. Cyberpsychology & behavior : the impact of the Internet, multimedia and virtual reality on behavior and society. 2007;10(4):536-44.
  • 38. Sarig Bahat H, Croft K, Carter C, Hoddinott A, Sprecher E, Treleaven J. Remote kinematic training for patients with chronic neck pain: a randomised controlled trial. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2018;27(6):1309-23.
  • 39. Vuillerme N, Pinsault N. Experimental neck muscle pain impairs standing balance in humans. Experimental brain research. 2009;192(4):723-9.
  • 40. Treleaven J. Sensorimotor disturbances in neck disorders affecting postural stability, head and eye movement control. Manual therapy. 2008;13(1):2-11.
  • 41. Silva AG, Cruz AL. Standing balance in patients with whiplash-associated neck pain and idiopathic neck pain when compared with asymptomatic participants: A systematic review. Physiotherapy theory and practice. 2013;29(1):1-18.
  • 42. Kirmizi M, Yalcinkaya G, Sengul YS, Kalemci O, Angin S. Investigation of balance performance under different sensory and dual-task conditions in patients with chronic neck pain. Musculoskeletal science & practice. 2021;56:102449.
  • 43. Thunberg J, Hellström F, Sjölander P, Bergenheim M, Wenngren B, Johansson H. Influences on the fusimotor-muscle spindle system from chemosensitive nerve endings in cervical facet joints in the cat: possible implications for whiplash induced disorders. Pain. 2001;91(1-2):15-22.
  • 44. Sjölander P, Michaelson P, Jaric S, Djupsjöbacka M. Sensorimotor disturbances in chronic neck pain--range of motion, peak velocity, smoothness of movement, and repositioning acuity. Manual therapy. 2008;13(2):122-31.
  • 45. Descarreaux M, Passmore SR, Cantin V. Head movement kinematics during rapid aiming task performance in healthy and neck-pain participants: the importance of optimal task difficulty. Manual therapy. 2010;15(5):445-50.
  • 46. Li L, Yu F, Shi D, Shi J, Tian Z, Yang J, et al. Application of virtual reality technology in clinical medicine. American journal of translational research. 2017;9(9):3867-80.
  • 47. Dużmańska N, Strojny P, Strojny A. Can Simulator Sickness Be Avoided? A Review on Temporal Aspects of Simulator Sickness. Frontiers in psychology. 2018;9:2132.
  • 48. Bruck S, Watters PA. The factor structure of cybersickness. Displays. 2011;32(4):153-8.
  • 49. Lee J, Kim M, Kim J. A Study on Immersion and VR Sickness in Walking Interaction for Immersive Virtual Reality Applications. Symmetry. 2017;9(5):78.
  • 50. Tyrrell R, Sarig-Bahat H, Williams K, Williams G, Treleaven J. Simulator sickness in patients with neck pain and vestibular pathology during virtual reality tasks. Virtual Real. 2018;22(3):211–9.
  • 51. Reason JT, Brand JJ. Motion sickness. Oxford, England: Academic Press; 1975. vii, 310-vii, p.
  • 52. Reason JT. Motion sickness adaptation: a neural mismatch model. Journal of the Royal Society of Medicine. 1978;71(11):819-29.
  • 53. Riccio GE, Stoffregen TA. An ecological Theory of Motion Sickness and Postural Instability. Ecological Psychology. 1991;3(3):195-240.
  • 54. Ebenholtz SM. Motion sickness and oculomotor systems in virtual environments. Presence: Teleoperators & Virtual Environments. 1992;1(3):302-5.
  • 55. Ebenholtz SM. Oculomotor systems and perception: Cambridge Univ Pr; 2001.