Lignin polipropilen kompozitlerinde ara yüzey kimyasallarının mukavemete etkisi

Doğal elyaf ile takviye edilen kompozit malzemeler akademide ve endüstride yoğun çalışılan bir konudur. Lignin doğal bir dolgu maddesi olarak kullanılmasının yanı sıra selüloz esaslı biyoetanol ve kağıt endüstrilerinin de yan ürünüdür. Lignin çok farklı uygulamalarda 20 yıla yakındır kullanılmaktadır. Bu çalışmada soda lignin ve polipropilen kompozitleri çift vidalı polimer işleme makinasında karıştırılmıştır ve 2 farklı ara yüzey ajanı da % 0.1, % 0.3 ve % 0.5 oranlarında karıştırılmıştır. Mekanik özellikler, ısıl özellikler ve morfolojik etkileri incelenmiştir. Sonuçlar göstermiştir ki en iyi sonuçlar % 0.3 yüzey kimyasal oranı ile yapılmıştır. Termogravimetrik analizler lignin katkılı polipropilen kompozitlerinin ısıl kararlılığının daha yüksek olduğunu göstermiştir.

The influence of coupling agents on mechanical properties of lignin-filled polypropylene composites

Natural fiber filled/reinforced composite materials are heavily studied in the academy and industry. Lignin is both a natural filling material and a side product of cellulosic bioethanol and paper industries. Lignin has been used as a filling/reinforcing material for twenty years in order to create value-added products. In this study, 10 % wt. soda lignin reinforced polypropylene composites with and without coupling agents was produced by using twin-screw extruder in order to investigate the effect of coupling agent type and the effect of coupling agent content (0.1 %, 0.3 %, and 0.5 % wt.). Mechanical, thermal and morphological properties of the composites were investigated. The results showed that the optimum amount of coupling agents in composites was 0.3% for the best interaction with lignin and polymer. According to TGA analysis, it can be concluded that lignin filled composite is more stable compared to neat copolymer.

___

  • De Wild, P., Huijgen, W., and Heeres, H. 2012. Pyrolysis of wheat straw-derived organosolv lignin. Journal of Analytical and Applied Pyrolysis 93: 95-103.
  • Fan, D., Chang, P.R., LING, N., Yu, J., and Huang, J. 2011. Structure and properties of alkaline lignin-filled poly (butylene succinate) plastics.
  • González Sánchez, C. and Alvarez, L. 1999. Micromechanics of lignin/polypropylene composites suitable for industrial applications. Macromolecular Materials and Engineering 272(1): 65-70.
  • Kadla, J.F. and Kubo, S. 2004. Lignin-based polymer blends: analysis of intermolecular interactions in lignin–synthetic polymer blends. Composites Part A: Applied Science and Manufacturing 35(3): 395-400.
  • Kharade, A. and Kale, D. 1999. Lignin‐filled polyolefins. Journal of applied polymer science 72(10): 1321-1326.
  • Košíková, B., Revajová, A., and Demianova, V. 1995. The effect of adding lignin on modification of surface properties of polypropylene. European polymer journal 31(10): 953-956.
  • Laurichesse, S. and Averous, L. 2014. Chemical modification of lignins: Towards biobased polymers. Progress in Polymer Science 39(7): 1266-1290.
  • Li, J., Li, S., Wang, H., Yang, Y., and Guo, G. 2011. PREPARATION OF A LIGNIN-BASED COMPOSITE AND ITS PROPERTIES. 2011. No. 2.
  • Li, Y., Mlynar, J., and Sarkanen, S. 1997. The first 85% kraft lignin‐based thermoplastics. Journal of Polymer Science Part B: Polymer Physics 35(12): 1899-1910.
  • Luong, N.D., Binh, N.T.T., Kim, D.O., Kim, D.-S., Lee, S.H., Kim, B.J., Lee, Y.S., and Nam, J.-D. 2012. An eco-friendly and efficient route of lignin extraction from black liquor and a lignin-based copolyester synthesis. Polymer bulletin 68(3): 879-890.
  • Mariotti, N., Wang, X.M., Rodrigue, D., and Stevanovic, T. 2013. Combination of esterified kraft lignin and MAPE as coupling agent for bark/HDPE composites. Journal of Materials Science Research 3(2): 8.
  • Olsson, S., Ostmark, E., Ibach, R.E., Clemons, C.M., Segerholm, K., and Englund, F. The use of esterified lignin for synthesis of durable composites. In Proceedings of the 7th Meeting of the Nordic-Baltic Network in Wood Material Science and Engineering (WSE), Oslo, Norway. 2011. pp. 173-178.
  • Peng, Y., Liu, R., Cao, J., and Chen, Y. 2014. Effects of UV weathering on surface properties of polypropylene composites reinforced with wood flour, lignin, and cellulose. Applied Surface Science 317: 385-392.
  • Pouteau, C., Baumberger, S., Cathala, B., and Dole, P. 2004. Lignin–polymer blends: evaluation of compatibility by image analysis. Comptes rendus biologies 327(9-10): 935-943.
  • Pucciariello, R., Villani, V., Bonini, C., D'Auria, M., and Vetere, T. 2004. Physical properties of straw lignin-based polymer blends. Polymer 45(12): 4159-4169.
  • Sahoo, S., Misra, M., and Mohanty, A.K. 2011a. Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Composites Part A: Applied Science and Manufacturing 42(11): 1710-1718.
  • Sahoo, S., Seydibeyoğlu, M., Mohanty, A., and Misra, M. 2011b. Characterization of industrial lignins for their utilization in future value added applications. Biomass and bioenergy 35(10): 4230-4237.
  • Sailaja, R. and Deepthi, M. 2010. Mechanical and thermal properties of compatibilized composites of polyethylene and esterified lignin. Materials & Design 31(9): 4369-4379.
  • Seydibeyoğlu, M.Ö. 2012. A novel partially biobased PAN-lignin blend as a potential carbon fiber precursor. BioMed Research International 2012.
  • Sun, R. and Tomkinson, J. 2001. Fractional separation and physico-chemical analysis of lignins from the black liquor of oil palm trunk fibre pulping. Separation and Purification Technology 24(3): 529-539. doi:https://doi.org/10.1016/S1383-5866(01)00153-8.
  • Toriz, G., Denes, F., and Young, R. 2002. Lignin‐polypropylene composites. Part 1: Composites from unmodified lignin and polypropylene. Polymer Composites 23(5): 806-813. Yeo, J.-S., Seong, D.-W., and Hwang, S.-H. 2015. Chemical surface modification of lignin particle and its application as filler in the polypropylene composites. Journal of Industrial and Engineering Chemistry 31: 80-85.
  • Zhong, M., Dai, H., Yao, H., Yang, J., and Chen, F. 2011. Strong, flexible high-lignin polypropylene blends. Polym Res Online. doi 10.