Yersel Lazer Tarama Teknolojileriyle Oluşturulan 3B Modellerin Akıllı Kent Uygulamalarında Kullanımı: Mersin Süslü Çeşme Örneği

Üç boyutlu (3B) akıllı kent modelleri, kentleri insanlara tanıtmanın etkili bir yoludur ve navigasyon, turizm, tanıtım, kent planlama, görselleştirme gibi pek çok farklı uygulamada yaygın olarak kullanılmaktadır. Ancak kentsel çevrelerdeki düzensiz kentsel yapılar ya da belirli insan dinamikleri gibi çeşitli etmenler nedeniyle 3B veriye erişim aşamasında bazı teknolojilerin kullanımı sınırlanabilir. Yersel lazer tarama (YLT) yöntemi kentlerin 3B modellenmesinde sağladığı kolaylıklar sayesinde sıklıkla kullanılan bir yöntemdir. Bu araştırma makalesi, kentlerin 3B sanal modellerinin üretilmesi için bir metodoloji önermektedir. Çalışmada, 3B kent uygulamalarında kullanılmak üzere bir yapının 3B modelini üretmek için, YLT teknolojilerinin kullanım olanaklarını araştırılmıştır. Çalışma alanı Mersin’in tarihi çeşmelerinden biri olan Süslü Çeşme olarak belirlenmiştir. Çalışma kapsamında FARO marka FocusS 350 modelindeki YLT ile toplanan veri setleri SCENE yazılımında işlenmiş ve 3B model üretimi başarılı bir şekilde gerçekleştirilmiştir. Sonuç olarak, yüksek geometrik doğruluğa ve görsel bütünlüğe sahip bir 3B sanal model elde edilmiştir.

The Use of 3D Models Created with Terrestrial Laser Scanning Technologies in Smart City Applications: The Example of Süslü Fountain in Mersin

Three-dimensional (3D) smart city models are an effective way of introducing cities to people and are widely used in many different applications such as navigation, tourism, publicity, urban planning and visualization. However, due to various factors such as irregular urban structures in urban environments or certain human dynamics, the use of some technologies may be limited in the stage of accessing 3D data. Terrestrial laser scanning (TLS) method has become a frequently used method thanks to the convenience it provides in 3D modeling of cities. This paper proposes a methodology for generating 3D virtual models of cities. In the study, the possibilities of using TLS technologies were investigated to produce a 3D model of a building to be used in 3D urban applications. The study area was determined as Süslü Fountain, the historical fountain of Mersin. Within the scope of the study, the data sets collected with TLS in the FARO brand FocusS 350 model were processed in SCENE software and 3D model production was successfully carried out. As a result, a 3D virtual model with high geometric accuracy and visual integrity was obtained.

___

  • Abellán A, Oppikofer T, Jaboyedoff M, Rosser N J, Lim M & Lato M J (2014). Terrestrial Laser Scanning of Rock Slope İnstabilities. Earth Surface Processes and Landforms, 39(1), 80-97.
  • Al Nuaimi E, Al Neyadi H, Mohamed N & Al-Jaroodi J (2015). Applications of big data to smart cities. Journal of Internet Services and Applications, 6(1), 1-15.
  • Alptekin A & Yakar M (2020). Kaya Bloklarının 3B Nokta Bulutunun Yersel Lazer Tarayıcı Kullanarak Elde Edilmesi. Turkey Lidar Journal, 2(1), 1-4.
  • Alptekin A, Çelik M Ö, Doğan Y & Yakar M (2019). Mapping of a Rockfall Site With an Unmanned Aerial Vehicle. Mersin Photogrammetry Journal, 1(1), 12-16.
  • Alonso J S J, Rubio J M, Martin J F & Fernandez J G (2011). Comparing Time Of Flight and Phase Shift. The Survey of the Royal Pantheon in the Basilica of San Isidoro(Leon). In procs. of ISPRS Workshop‘3D ARCH.
  • Aslan M M & Bulut Y (2019). Akıllı Kent Uygulamalarının Kentsel Güvenlik Açısından Önemi. Assam Uluslararası Hakemli Dergi, 52-60.
  • Balsa-Barreiro J & Fritsch D (2018). Generation of Visually Aesthetic and Detailed 3D Models of Historical Cities by Using Laser Scanning and Digital Photogrammetry. Digital Applications in Archaeology and Cultural Heritage, 8, 57-64.
  • Baltsavias E P (1999). Airborne Laser Scanning: Basic Relations and Formulas. ISPRS Journal of Photogrammetry and Remote sensing, 54(2-3), 199-214.
  • Barreiro J B & García J L L (2006). La tecnología LiDAR: una visión general. Topografía y Cartografía: Revista del Ilustre Colegio Oficial de Ingenieros Técnicos en Topografía, 23(135), 28-33.
  • Biljecki F, Stoter J, Ledoux H, Zlatanova S & Çöltekin A (2015). Applications of 3D City Models: State of The Art Review, ISPRS Int. J. Geo-Inform., 4, 2842–2889.
  • Çelik M Ö, Hamal S N G & Yakar İ (2020). Yersel Lazer Tarama (YLT) Yönteminin Kültürel Mirasın Dokümantasyonunda Kullanımı: Alman Çeşmesi Örneği. Turkey Lidar Journal, 2(1), 15-22.
  • Dlodlo N, Gcaba O & Smith A (2016). Internet of things technologies in smart cities. In 2016 IST-Africa Week Conference, 1-7.
  • Döllner J, Baumann K & Buchholz H (2006). Virtual 3D city models as foundation of complex urban information spaces 107-112.
  • Echosurveying (2021). https://echosurveying.com/3d-laser-scanner/faro-focus-s350-laser-canner(Erişim Tarihi: 01.11.2021)
  • Ernst F, Şenol H İ, Akdağ S & Barutcuoglu Ö (2021). Virtual Reality for City Planning. Harran Üniversitesi Mühendislik Dergisi, 6(3), 150-160. DOI: 10.46578/humder.941015
  • Everest A & Merzeci A M (2011). Mersin’in Çeşmeleri ve Anıt Ağaçları. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi, 39-39.
  • Faro(2021).https://www.faro.com/en/Products/Hardware/Focus-Laser-Scanners (Erişim Tarihi: 01.11.2021)
  • Hamal S N G, Binnaz S & Ulvi A (2020). Using of Hybrid Data Acquisition Techniques for Cultural Heritage a Case Study of Pompeiopolis. Türkiye İnsansız Hava Araçları Dergisi, 2(2), 55-60.
  • Heritage G & Large A (2009). Laser Scanning for the Environmental Sciences.
  • Hiremagalur J, Yen K S, Akin K, Bui T, Lasky T A, & Ravani B (2007). Creating Standards and Specifications for the Use of Laser Scanning in Caltrans Projects (No. CA07-0964).
  • Jovanović D, Milovanov S, Ruskovski I, Govedarica M, Sladić D, Radulović A & Pajić V (2020). Building virtual 3D city model for Smart Cities applications: A case study on campus area of the University of Novi Sad. ISPRS International Journal of Geo-Information, 9(8), 476.
  • Kaya Y, Şenol H İ & Polat N (2021). Three-dimensional modeling and drawings of stone column motifs in Harran Ruins. Mersin Photogrammetry Journal, 3(2), 48-52 . DOI: 10.53093/mephoj.1012937
  • Keleş M D & Aydın C C (2020) Mobil Lidar Verisi ile Kent Ölçeğinde Cadde Bazlı Envanter Çalışması ve Coğrafi Sistemleri Entegrasyonu-Ankara Örneği. Geomatik, 5(3), 193-200.
  • Kokulu V (2013). İçel Sanat Kulübü 2013-198 Sayılı Aylık Bülteni.
  • Kostrikov S V (2019). Urban Remote Sensing With Lıdar For The Smart City Concept İmplementation. Вісник Харківського національного університету імені ВН Каразіна, cерія" Геологія. Географія. Екологія", 50.
  • Liu X (2008). Airborne LiDAR for DEM Generation: Some Critical İssues. Progress in Physical Geography, 32(1), 31–49.
  • Mahdianpari M, Granger J E, Mohammadimanesh F, Warren S, Puestow T, Salehi B & Brisco B (2021). Smart solutions for smart cities: Urban wetland mapping using very-high resolution satellite imagery and airborne LiDAR data in the City of St. John's, NL, Canada. Journal of Environmental Management, 280.
  • Masaharu H & Hasegawa H (2000). Three-Dimensional City Modeling From Laser Scanner Data By Extracting Building Polygons Using Region Segmentation Method. International Archives of Photogrammetry and Remote Sensing, 33(B3/1; PART 3), 556-562.
  • Meng X, Currit N & Zhao K (2010). Ground Filtering Algorithms for Airborne Lidar Data: A Review of Critical İssues. Remote Sensing, 2(12), 833–860.
  • Metin A (2016). Üç Boyutlu Kent Modellerinde Ayrıntı Düzeyi Kavramı İnce Minareli Medrese (Konya) Örneği. Master's Thesis, Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü.
  • Mohammed F, Idries A, Mohamed N, Al-Jaroodi J & Jawhar I (2014). UAVs for smart cities: Opportunities and challenges. In 2014 International Conference on Unmanned Aircraft Systems, 267-273.
  • Oruç M E & Öztürk İ L (2021). Usability of Terrestrial Laser Technique in Forest Management Planning. Turkey Lidar Journal, 3(1), 17-24.
  • Özer S (2008). Geçmişten Günümüze Kent-Çevre ilişkisi İçinde Çeşmeler. Sanat Dergisi, (13), 129-134.
  • Özerbil T, Gökten E, Önder M, Selçuk O, Sarilar N Ç, Tekgül A & Tütüneken A (2014). Konya Büyükşehir Belediyesi Eğik (Oblique) Görüntü Alımı, 3 Boyutlu Kent Modeli ve 3 Boyutlu Kent Rehberi Projesi. V. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu, 14-17.
  • Pinterest (2021). https://tr.pinterest.com/pin/476677941786262897 (Erişim Tarihi: 01.11.2021)
  • Polat N (2020). LIDAR Derived 3d City Modelling. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 44, 339-342.
  • Sahin C, Alkis A, Ergun B, Kulur S, Batuk F & Kilic A (2012). Producing 3D City Model With The Combined Photogrammetric and Laser Scanner Data in The Example of Taksim Cumhuriyet Square. Optics and Lasers in Engineering, 50(12), 1844-1853.
  • Şenol H İ, Pola N, Kaya Y, Memduhoğlu A & Ulukavak M (2021). Digital documentation of ancient stone carving in Şuayip City. Mersin Photogrammetry Journal, 3(1), 10-14. DOI: 10.53093/mephoj.899157
  • Su K, Li J & Fu H (2011). Smart City and The Applications. In 2011 İnternational Conference on Electronics, Communications and Control (ICECC), 1028-1031.
  • Ullah, Z, Al-Turjman F, Mostarda L & Gagliardi R (2020). Applications of artificial intelligence and machine learning in smart cities. Computer Communications, 154, 313-323.
  • Ulvi A (2021). Documentation, Three-Dimensional (3D) Modelling and visualization of cultural heritage by using Unmanned Aerial Vehicle (UAV) photogrammetry and terrestrial laser scanners. International Journal of Remote Sensing, 42(6), 1994-2021.
  • Ulvi A & Yakar M (2014). Yersel Lazer Tarama Tekniği Kullanarak Kızkalesi’nin Nokta Bulutunun Elde Edilmesi ve Lazer Tarama Noktalarının Hassasiyet Araştırması. Harita Teknolojileri Elektronik Dergisi, 6(1), 25-36. Retrieved from https://dergipark.org.tr/tr/pub/hartek/issue/7589/99627
  • Vu D D & Kaddoum G (2017). A waste city management system for smart cities applications. In 2017 Advances in Wireless and Optical Communications, 225-229.
  • Yakar M, Yıldız F & Yılmaz H M (2005). Tarihi Ve Kültürel Miraslarin Belgelenmesinde Jeodezi Fotogrametri Mühendislerinin Rolü. TMMOB Harita ve Kadastro Mühendisleri Odası, 10.
  • Yakar M, Yılmaz H M & Mutluoğlu H M (2009). Hacim Hesaplamalarında Laser Tarama ve Yersel Fotogrametrinin Kullanılması, TMMOB Harita ve Kadastro Mühendisleri Odası 12. Türkiye Harita Bilimsel ve Teknik Kurultayı, Ankara
  • Yakar M, Yilmaz H M & Mutluoglu O (2010). Comparative Evaluation of Excavation Volume by TLS and Total Topographic Station Based Methods. Lasers in Engineering 19 (5–6), 331–345
  • Yakar M, Orhan O, Ulvi A, Yiğit A Y & Yüzer M M (2015). Sahip Ata Külliyesi Rölöve Örneği. TMMOB Harita ve Kadastro Mühendisleri Odası, 10.
  • Yastıklı N & Çetin Z (2016). Hava Lidar Verileri ile 3b Bina Modellerinin Otomatik Üretimi.
  • Yılmaz H M & Yakar M (2008). Computing of Volume of Excavation Areas by Digital Close Range Photogrammetry. Arabian Journal for Science and Engineering 33 (1A), 63–79.
  • Yılmaz H M, Mutluoğlu Ö, Ulvi A, Yaman A & Bilgilioğlu S S (2018). İnsansız Hava Aracı ile Ortofoto Üretimi ve Aksaray Kampüsü Örneği. Geomatik Dergisi. 3(2), 129-136.
  • Yılmaz H M, Yakar M, Mutluoglu O, Kavurmaci M M & Yurt K (2012). Monitoring of soil erosion in Cappadocia region (SelimeAksaray-Turkey). Environ Earth Sci, 66, 75–81.
  • Erener A & Yakar M (2012). Monitoring Coastline Change Using Remote Sensing and GIS Technologies. Lecture Notes in Information Technology, 30, 310–314
  • Zeybek M (2020). Mobil LiDAR Nokta Bulutlarından Enerji Nakil Hatlarının Doğrusal Olmayan Modellerle Kestirimi. Turkey Lidar Journal, 2(2), 55-63.
  • Zeybek M (2021). Indoor Mapping and Positioning Applications of Hand-Held LiDAR Simultaneous Localization and Mapping (SLAM) Systems. Turkey Lidar Journal, 3(1), 7-16.