Nokta Bulutu Verisinden Bina Cephelerine Ait Düzlemlerin RANSAC ile Segmentasyonu

Bu çalışma, yersel lazer tarama yoluyla elde edilen nokta bulutu verilerinden düzlem parçaları doğru bir şekilde elde etmek için izlenen bir iş akışını sunmaktadır. Bu iş akışı, veri toplama, ön işleme, RANSAC tabanlı segmentasyon, parametre ayarı ve sonuçların analizi gibi hususları içerir. Önerilen yaklaşım, mimari modelleme, şehir planlaması ve mirasın korunması için değerli bilgiler sağlayan, bina cephelerine karşılık gelen düzlemsel bölgeleri başarılı bir şekilde algılar ve çıkarır. Bu kapsamda yersel lazer tarayıcı kullanılarak Kocaeli’nde yapılan bir çalışmadan elde edilen veriler kullanılmıştır. İki farklı binaya ait cephelerde düzlemlerin tespiti çalışması gerçekleştirilmiştir. Buna göre birinci cephede 21 ikinci cephede 14 düzlem tespit edilmiştir. Elde edilen sonuçlara göre, farklı nokta sayısı ve doğrultuya sahip düzlemlerin tespit edilebilmesi, uygulanan metodolojinin geliştirilebilir olmasına rağmen etkili ve başarılı olduğunu göstermektedir.

Segmentation of Building Facade Planes from Point Cloud Data with RANSAC

This study presents a workflow for accurately obtaining plane segments from point cloud data obtained through terrestrial laser scanning. The workflow encompasses data acquisition, preprocessing, RANSAC-based segmentation, parameter tuning, and result analysis. The proposed approach successfully detects and extracts planar regions corresponding to building facades, providing valuable information for architectural modeling, urban planning, and heritage preservation. The study utilizes data collected through terrestrial laser scanning in Kocaeli, capturing the facades of two different buildings. A total of 21 planes were identified in the first facade and 14 planes in the second facade. The results demonstrate the effectiveness and success of the applied methodology in detecting planes with varying point densities and orientations. Although the methodology has potential for further improvement, it proves to be effective and successful in plane detection.

___

  • Adjiski V., Kaplan., G., & Mijalkovski, S. (2023). Assessment of the solar energy potential of rooftops using LiDAR datasets and GIS based approach. International Journal of Engineering and Geosciences, 8(2), 188-199.
  • Alptekin, A., & Yakar, M. (2020). Kaya bloklarının 3B nokta bulutunun yersel lazer tarayıcı kullanarak elde edilmesi. Türkiye LİDAR Dergisi, 2(1), 1-4.
  • Alptekin, A., & Yakar, M. (2021). Lazer Tarayıcının Jeolojik Olayların Modellenmesinde Kullanımı. Türkiye LiDAR Dergisi, 3(2), 71-75.
  • Avdan, U., Pekkan. E., & Çömert, R. (2013). Mağara Ölçümlerinde Yersel Lazer Tarayıcıların Kullanılması (Tozman Mağarası Örneği). Harita Teknolojileri Elektronik Dergisi, 5(2) 16-28.
  • Canaz Sevgen, S., & Karsli, F. (2020). An improved RANSAC algorithm for extracting roof planes from airborne lidar data. The Photogrammetric Record, 35(169), 40-57.
  • Carrilho, A. C., & Galo, M. (2018). Extraction of building roof planes with stratified random sample consensus. The Photogrammetric Record, 33(163), 363-380.
  • Çetin, Z., &Yastıklı, N. (2023). Automatic detection of single street trees from airborne LiDAR data based on point segmentation methods. International Journal of Engineering and Geosciences, 8(2), 129-137.
  • Çömert, R., Özdemir, S., Bilgilioglu, B. B., Alemdag, S., & Zeybek, H. I., (2023). 3D data integration for geo-located cave mapping based on unmanned aerial vehicle and terrestrial laser scanner data. BALTICA, 36(1), 37-50.
  • Erdoğan, A., Görken, M., & Kabadayı, A. (2022). Study on the use of unmanned aerial vehicles in open mine sites: A case study of Ordu Province Mine Site. Advanced UAV, 2(2), 35-40.
  • Hammoudi, K., Dornaika, F., & Paparoditis, N. (2009). Extracting building footprints from 3D point clouds using terrestrial laser scanning at street level. ISPRS/CMRT09, 38, 65-70.
  • Kabadayı, A., & Uysal, M. (2019). İnsansiz Hava Araci ile Elde Edilen Verilerden Binalarin Tespiti. Türkiye İnsansız Hava Araçları Dergisi, 1(1), 8-14.
  • Kabadayı, A., & Uysal, M. (2020). Çok yüksek çözünürlüklü İHA verilerinden bina tespiti. Türkiye İnsansız Hava Araçları Dergisi, 2(2), 43-48.
  • Kanun, E., Metin, A., & Yakar, M. (2021). Yersel Lazer Tarama Tekniği Kullanarak Ağzıkara Han’ın 3 Boyutlu Nokta Bulutunun Elde Edilmesi. Türkiye LiDAR Dergisi, 3(2), 58-64.
  • Karabacak, A., & Yakar, M. (2023). 3D Modeling of Mufti Abdullah Sıddık Mosque using Wearable Mobile LiDAR. Advanced LiDAR, 3(1), 01-09.
  • Karataş, L., Alptekin, A., & Yakar, M. (2022a). Creating Architectural Surveys of Traditional Buildings with the Help of Terrestrial Laser Scanning Method (TLS) and Orthophotos: Historical Diyarbakır Sur Mansion. Advanced LiDAR, 2(2), 54-63.
  • Karataş, L., Alptekin, A., & Yakar, M. (2022b). Determination of Stone Material Deteriorations on the Facades with the Combination of Terrestrial Laser Scanning and Photogrammetric Methods: Case Study of Historical Burdur Station Premises. Advanced Geomatics, 2(2), 65-72.
  • Nazari, S. W., Akarsu, V., & Yakar, M. (2023). Analysis of 3D Laser Scanning Data of Farabi Mosque Using Various Softwaren. Advanced LiDAR, 3(1), 22-34.
  • Ozdemir, S., Akbulut, Z., Karsli, F., & Acar, H. (2021). Automatic extraction of trees by using multiple return properties of the lidar point cloud. International Journal of Engineering and Geosciences, 6(1), 20-26.
  • Polat, N., & Uysal, M. (2020). An investigation of tree extraction from UAV-based photogrammetric dense point cloud. Arabian journal of geosciences, 13(17), 846.
  • Sanchez-Diaz, B., Mata-Zayas, E. E., Gama-Campillo, L. M., Rincon-Ramirez, J. A., Vidal-Garcia, F., Rullan-Silva, C. D., Sanchez-Gutierrez, F. (2022). LiDAR modeling to determine the height of shade canopy tree in cocoa agrosystems as available habitat for wildlife. International Journal of Engineering and Geosciences, 7(3), 283-293.
  • Ulvi, A., Yakar, M., Toprak, A. S., & Mutluoglu, O. (2014). Laser scanning and photogrammetric evaluation of Uzuncaburç Monumental Entrance. International Journal of Applied Mathematics Electronics and Computers, 3(1), 32-36.
  • Uzar, M., Tunalioglu, N., Arican, D., & Arda, T. (2019). Investigation of the filtering methods on 3D models using terrestrial laser scanning data. Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (4), 1765-1775.
  • Yakar, M., Ulvi, A., & Toprak, A. S. (2015). The Problems and Solution Offers, Faced During The 3d Modeling Process Of Sekiliyurt Underground Shelters With Terrestrial Laser Scanning Method. International Journal of Environment and Geoinformatics, 2(2), 39-45.
  • Yakar, M., Ulvi, A., & Toprak, A. S. (2016). The Use of Laser Scanner in Caves, Encountered Problems and Solution Suggestion. Universal Journal of Geoscience, 4(4), 81-88.
  • Yiğit, A. Y., Hamal, S. N. G., Yakar, M., & Ulvi, A. (2023). Investigation and Implementation of New Technology Wearable Mobile Laser Scanning (WMLS) in Transition to an Intelligent Geospatial Cadastral Information System. Sustainability, 15(9), 7159.