Orta Anadolu Volkanik Bölgesi'nde (OAVB) Piroklastik Kayacın Hidrotermal Alterasyonu Sırasında Gözlenen Mineralojik ve Jeokimyasal Değişimler: Doğal Oluşum Koşullarının Simülasyonu

Orta Anadolu Volkanik Bölgesi’nde (OAVB) geniş alanlarda yayılım gösteren piroklastik akıntı birimleri çoğu zaman hidrotermal alterasyona maruz kalmış şekilde bulunmaktadır. Bu çalışma, bölgede farklı koşullar altında gerçekleşen hâkim alterasyon tipini saptamak, ikincil mineral oluşumunu etkileyen fizikokimyasal koşulları ortaya koymak ve hâkim jeolojik süreçlere yaklaşımda bulunmak amacıyla gerçekleştirilmiştir. Zelve ignimbiriti bölgede en fazla hidrotermal alterasyona uğramış piroklastik akıntı birimlerinden birini temsil etmektedir. Akıntı birimine ait ilksel pomza örnekleri, alkali çözeltiler ile kontrollü koşullar altında tepkimeye sokulmuş ve alterasyon sonucu oluşan zeolit mineralleri incelenmiştir. Bu kapsamda yürütülen deneysel çalışmalar, bölgede etkin hidrotermal koşullar göz önünde bulundurarak, otojenik basınç altında ve yaklaşık 150 ºC sıcaklıkta NaOH, KOH ve NaHCO3 gibi alkali çözelti aktivite ajanları kullanarak gerçekleştirilmiştir. Deneyler sonucunda elde edilen reaksiyon ürünleri X-ışını difraksiyonu (XRD) ile tanımlanmış ve taramalı elektron mikroskobu (SEM) çalışmalarıyla oluşan ürünler karakterize edilmiştir. Sonuç olarak, filipsit (K- ve Na-), analsim, mordenit ve şabazit gibi zeolit mineralleri sentezlenmiştir. Gerçekleştirilen çalışmalar, ilksel camdan itibaren gerçekleşen hidrotermal alterasyonda NaOH alkali çözeltisinin, zeolit mineralinin oluşumunda etkin aktivite ajanı olduğunu ortaya koymaktadır. Bununla birlikte, bölgede doğal olarak oluşan zeolit mineralleri (analsim, filipsit, şabazit, mordenit, klinoptilolit ve eriyonit) ile deneysel çalışmalar sonucunda elde edilen ürünlerin örtüştüğü belirlenmiştir. Alterasyon ürünleri ana ve iz element bileşimleri başlangıç malzemesine göre belirgin farklılıklar göstermektedir. Ürünlere ait CaO, K2O ve Na2O ana oksit bileşimlerinde zenginleşme, Rb, Ba ve P gibi elementlerde tüketilme gözlenmiştir. Bu durum, özellikle zeolit oluşumu sırasında başlangıç malzemesi ile çözelti arasında gerçekleşen element değişimleri ile açıklanabilmektedir.

Mineralogical and Geochemical Changes During Hydrothermal Alteration of Pyroclastic Rock in the Central Anatolian Volcanic Province (CAVP): Simulating Natural Formation Conditions

The majority of the pyroclastic flow deposits in the Central Anatolia Volcanic Province (CAVP) have already been subjected to hydrothermal alteration. In this study, we aimed to identify the dominant alteration type under different conditions and reveal the physicochemical conditions and geological processes that influenced secondary mineral formation. The Zelve ignimbrite represents one of the most hydrothermally altered pyroclastic flow units in the study area. Juvenile pumice fragments from the Zelve ignimbrite were reacted with alkaline solutions under controlled experimental conditions, and reaction products in the form of zeolites were identified. Experimental studies were carried out under autogenic pressure and using alkaline solution activity agents such as NaOH, KOH, and NaHCO3 at a temperature of 150 °C, considering the most effective hydrothermal conditions in the region. The reaction products obtained in experimental studies were identified by X-ray diffraction (XRD) and characterized by scanning electron microscopy (SEM). As a result, zeolite minerals such as phillipsite (K- and Na-), analcime, mordenite, and chabazite were synthesized. We concluded that NaOH alkaline solution is an effective activity agent in the formation of zeolite minerals during hydrothermal alteration of a juvenile volcanic product. In addition, zeolite phases naturally crystallizing in the region (analcime, phillipsite, chabazite, mordenite, clinoptilolite, and erionite) mostly coincide with the reaction products from experimental studies. Major and trace element compositions of reaction products exhibited distinct differences with respect to starting composition. Reaction products were enriched in major oxides of Na2O, K2O and CaO, whereas they were depleted in trace element concentrations of Rb, Ba and P. This indicates elemental exchange occurred between the solution and starting material to form zeolites.

___

  • Akin, L., Aydar, E., Schmitt, A. K. & Çubukçu, H. E. (2019). Application of zircon typology method to felsic rocks (Cappadocia, Central Anatolia, Turkey): a zircon crystallization temperature perspective. Turkish Journal of Earth Science, 28(3), 351–371. http://doi.org/10.3906/yer-1806-20
  • Akin, L., Aydar, E., Schmitt, A. K., Çubukçu & H. E., Gerdes, A. (2021). Zircon geochronology and O-Hf isotopes of Cappadocian ignimbrites: New insights into continental crustal architecture underneath the Central Anatolian Volcanic Province, Turkey, Gondwana Research, 91, 166-187. https://doi.org/10.1016/j.gr.2020.12.003
  • Alderton, D. (2021). Zeolites, Encyclopedia of Geology (Second Edition). Academic Press, 313–325. https://doi.org/10.1016/B978-0-08-102908-4.00041-2
  • Armbruster, T. & Gunter, M. E. (2001) Crystal Structures of Natural Zeolites. Reviews in Mineralogy and Geochemistry, 45. Natural Zeolites: Occurrence, Properties, Applications, 1–116.
  • Aydar, E., Schmitt, A. K., Çubukçu, H. E., Akin, L., Ersoy, O., Sen, E., Duncan, R.A. & Atici, G. (2012). Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions. Journal of Volcanology and Geothermal Research, 213–214, 83–97. https://doi.org/10.1016/j.jvolgeores.2011.11.005
  • Banfield, J.F. & Barker, W. W. (1998). Low-Temperature Alteration in Tuffs from Yucca Mountain, Nevada. Clays and Clay Minerals. 46, 27–37. https://doi.org/10.1346/CCMN.1998.0460104
  • Barrer, R. M. (1948). Synthesis of a zeolitic mineral chabazite-like sorptive properties. Journal of the Chemical Society, p.127.
  • Barrer, R. M., (1982). Hydrothermal chemistry of zeolites. Academic Press. London.
  • Bonetto, L., Camblor, M.A., Corma, A. & Pérez-Pariente, J. (1992). Optimization of zeolite-β in cracking catalysts influence of crystallite size. Applied Catalysis A: General, 82(1), 37–50. https://doi.org/10.1016/0926-860X(92)80004-V
  • Breck, D. W. (1974). Zeolite Molecular Sieves. John Wiley and Sons, New York, p.77.
  • Carbone, M., Emri, S., Dogan, A. U., Steele, Tuncer, M., Pass, H. I. & Baris, Y. I. (2007). A mesothelioma epidemic in Cappadocia: Scientific developments and unexpected social outcomes. Nature Reviews Cancer, 7, 147–154. https://doi.org/10.1038/nrc2068
  • Cicerali, D., Arslan, M., Adioğlu-Yazar, E., Yücel, C., Temizel, İ., Park, S. & Schroeder, P. A. (2020). Mineralogy, chemistry, and genesis of zeolitization in Eocene tuffs from the Bayburt area (NE Turkey): Constraints on alteration processes of acidic pyroclastic deposits. Journal of African Earth Sciences, 162, 103690. https://doi.org/10.1016/j.jafrearsci.2019.103690
  • Cipera, S. J., Apps, J. A. (2001). Geochemical stability of natural zeolites. In D.L. Bish & D.W. Ming (Eds.), Natural Zeolites: Occurrences, Properties, Applications (pp. 117–161. Mineralogical Society of America, Washington, DC.
  • Cundy, C. (1998). Microwave Techniques in the Synthesis and Modification of Zeolite Catalysts. A Review. Collection of Czechoslovak Chemical Communications, 63, 1699–1723. https://doi.org/10.1135/cccc19981699
  • Çiflikli, M. (2020). Hydrothermal alteration-related kaolinite/dickite occurrences in ignimbrites: an example from Miocene ignimbrite units in Avanos, Central Turkey. Arabian Journal of Geoscience, 13, 1044. https://doi.org/10.1007/s12517-020-06021-2.
  • Çiner, A. & Aydar, E. (2019). A Fascinating Gift from Volcanoes: The Fairy Chimneys and Underground Cities of Cappadocia. In C. Kuzucuoğlu, A. Çiner, N. Kazancı, (Eds.), Landscapes and Landforms of Turkey (pp.: 535-549). World Geomorphological Landscapes. Springer, Cham. https://doi.org/10.1007/978-3-030-03515-0_31
  • Çiner, A., Aydar, E. & Sarıkaya, M. A. (2015). Volcanism and evolution of the landscapes in Cappadocia. La Cappadoce Méridionale, 1–15. http://dx.doi.org/10.4000/books.ifeagd.3212
  • De Gennaro, M., Langella, A., Cappelletti, P. & Colella, C. (1999). Hydrothermal Conversion of Trachytic Glass to Zeolite. 3. Monocationic Model Glasses. Clays and Clay Minerals, 47, 348–357. https://doi.org/10.1346/CCMN.1999.0470311
  • Deer, R. A., Howie, W. A., Wise, W. S., Zussman, J. (2004). Rock Forming Minerals, Volume 4B. Framework silicates: Silica Minerals, Feldspathoids and the Zeolites. 2nd edition. The Geological Society, London, 982 pp. https://doi.org/10.1180/0680831
  • Dogan, A. U. (2003). Zeolite mineralogy and Cappadocian erionite. Indoor and Built Environment, 12, 337–342. https://doi.org/10.1177%2F142032603036408.
  • Font, O., Moreno, N., Díez, S., Querol, X., López-Soler, A., Coca, P. & García Peña, F. (2009). Differential behaviour of combustion and gasification fly ash from Puertollano Power Plants (Spain) for the synthesis of zeolites and silica extraction. Journal of Hazardous Materials, 166(1), 94–102. https://doi.org/10.1016/j.jhazmat.2008.10.120
  • Goni S., Pena R. & Guerrero A. (2010). Hydrothermal synthesis of zeolite from coal class F fly ash. Materials de Construcción, 60, 51–60. https://doi.org/10.3989/mc.2010.47808
  • Gottardi, G. (1989). The genesis of zeolites. European Journal of Mineralogy, 1(4), 479–488. https://doi.org/10.1127/ejm/1/4/0479
  • Göz, E., Kadir, S., Gürel, A. & Eren, M. (2014). Geology, mineralogy, geochemistry, and depositional environment of a Late Miocene/Pliocene fluviolacustrine succession, Cappadocian Volcanic Province, central Anatolia, Turkey. Turkish Journal of Earth Science, 23(84), 386–411. https://doi.org/10.3906/yer-1307-17.
  • Hincapie, B.O., Garces, L. J., Zhang, Q., Sacco, A., Suib, S. L. (2004). Synthesis of mordenite nanocrystals. Microporous Mesoporous Materials, 67(1), 19–26. https://doi.org/10.1016/j.micromeso.2003.09.026
  • Hou, J., Yuan, J., Xu, J., Fu, Y. & Meng, C. (2013). Template-free synthesis and characterization of K-phillipsite for use in potassium extraction from seawater. Particuology, 11, 786–788. http://dx.doi.org/10.1016%2Fj.partic.2013.02.003
  • Idrus, A., Kolb, J. & Meyer, F. M. (2009). Mineralogy, lithogeochemistry and elemental mass balance of the hydrothermal alteration associated with the gold-rich Batu Hijau porphyry copper deposit, Sumbawa Island, Indonesia. Resource Geology, 59(3), 215–230. https://doi.org/10.1111/j.1751-3928.2009.00092.x
  • Innocenti, F., Mazzuoli, R., Pasquarè, G., Radicati Di Brozolo, F. & Villari, L. (1975). The Neogene calcalkaline volcanism of Central Anatolia: geochronological data on Kayseri—Nigde area. Geological Magazine, 112, 349–360. https://doi.org/10.1017/S0016756800046744
  • Jakobsson, S. P., Moore, J. G. (1986). Hydrothermal minerals and alteration rates at Surtsey volcano, Iceland. GSA Bulletin, 97(5), 648–659. https://doi.org/10.1130/0016-7606(1986)97<648:HMAARA>2.0.CO;2
  • Kawano, M. & Tomita, K. (1997). Experimental Study on the Formation of Zeolites from Obsidian by Interaction with NaOH and KOH Solutions at 150 and 200 °C. Clays and Clay Minerals, 45, 365–377. https://doi.org/10.1346/CCMN.1997.0450307
  • Kim, J. & Kim, D. H. (2018). Synthesis of faulted CHA-type zeolites with controllable faulting probability. Microporous and Mesoporous Materials, 256, 266–274. https://doi.org/10.1016/J.MICROMESO.2017.08.051
  • Kumar V., Nagae M., Matsuda M. & Miyake M. (2009). Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained Zeolite X in multi-metal systems. Journal of Environmental Management, 90, 2507–2514. https://doi.org/10.1016/j.jenvman.2009.01.009
  • Le Pennec, J.L., Bourdier, J.-L., Forger, J.-L., Temel, A., Camus, G. & Gourgaud, A. (1994). Neogene ignimbrites of the Nevsehir plateau (Central Turkey): stratigraphy, distribution and source constraints. Journal of Volcanology and Geothermal Research, 63, 59–87. https://doi.org/10.1016/0377-0273(94)90018-3
  • Le Pennec, J. L., Temel, A., Froger, J. L., Sen, S., Gourgaud, A. & Bourdier, J. L. (2005). Stratigraphy and age of the Cappadocia ignimbrites, Turkey: reconciling field constraints with paléontologie, radiochronologic, geochemical and paleomagnetic data. Journal of Volcanology and Geothermal Research, 141, 45–64
  • Lu, B. W., Yakushi, Y., Oumi, Y., Itabashi, K. & Sano, T. (2006). Control of crystal size of high-silica mordenite by quenching in the course of crystallization process. Microporous Mesoporous Materials, 95(1–3), 141–145.
  • Morales-Pacheco, P., Domínguez, J., Bucio, L., Alvarez, F., Sedran, U. & Falco, M. (2011). Synthesis of FAU(Y)- and MFI(ZSM5)-nanosized crystallites for catalytic cracking of 1,3,5-triisopropylbenzene. Catalysis Today, 166, 25–38. https://doi.org/10.1016/j.cattod.2010.07.005
  • Mues-Schumacher, U. & Schumacher, R. (1996). Problems of stratigraphic correlation and new K-Ar data for ignimbrites from Cappadocia, Central Turkey. International Geology Review, 38, 737–746. https://doi.org/10.1080/00206819709465357
  • Núñez, V. M. S. & Torres, L. D. B. (2015) Synthesis of zeolitic materials from volcanic ash in presence and absence of cetyltrimethylammonium bromide. Revista Internacional de Contaminacion Ambiental, 31(2), 185–193.
  • Ortíz, F. A. Q, Valenzuela, J. T. & Reyes, C.A.R. (2011). Zeolitisation of Neogene sedimentary and pyroclastic rocks exposed in Paipa (Boyacá), in the Colombian Andes: simulating their natural formation conditions. Earth Science Research Journal, 15(2), 89–100.
  • Palčić, A., Subotić, B., Valtchev, V. & Bronić, J. (2013). Nucleation and crystal growth of zeolite A synthesised from hydrogels of different density. CrystEngComm, 15, 5784–5791. https://doi.org/10.1039/C3CE40450A
  • Pasquarè, G. (1968). Geologie of the Senozoic volkanic area of Central Anatolia. Atti della Accademia Nazionale dei Lincei. No. Delince, Menorie Serie, 1968, Roma, VIII, IX, 55–204.
  • Pasquarè, G., Poli, S., Vezzoli, L. & Zanchi, A. (1988). Continental arc volcanism and tectonic setting in Central Anatolia, Turkey. Tectonophysic, 146, 217–230. https://doi.org/10.1016/0040-1951(88)90092-3
  • Querol, X., Umanã, J. C., Plana, F., Alastuey, A., Lopez-Soler, A., Medinaceli, A., Valero, A., Domingo, M. J. & Garcia-Rojo, E. (2001). Synthesis of Na zeolites from fly ash in a pilot plant scale. Examples of potential environmental applications. Fuel, 80, 857–865. https://doi.org/10.1016/S0016-2361(00)00156-3
  • Rani, N., Shrivastava, J. P., Bajpai, R. K. (2012). Near hydrothermal alteration of obsidian glass: Implications for long term performance assessments. Journal of Geological Society of India, 79, 376–382. https://doi.org/10.1007/s12594-012-0058-3
  • Saracci, R., Simonato, L., Baris, Y., Artvinli, M. & Skidmore, J. (1982). The age-mortality curve of endemic pleural mesothelioma in Karain, Central Turkey. British Journal of Cancer, 45, 147–149. https://dx.doi.org/10.1038%2Fbjc.1982.19
  • Sheppard, R. A. & Hay, R. L. (2001). Formation of Zeolites in Open Hydrologic Systems. Reviews in Mineralogy and Geochemistry, 45(1), 261–275. https://doi.org/10.2138/rmg.2001.45.8
  • Sherman, J. D. (1999). Synthetic zeolites and other microporous oxide molecular sieves. Proceeding of the National Academy of Science of the United States of America, 96(7), 3471–3478. https://doi.org/10.1073/pnas.96.7.3471
  • Sun, S. S. & McDonough, W. F., (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publication, 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  • Surdam, R. C. & Sheppard, R. A. (1978). Zeolites in saline, alkaline-lake deposits.In L. B. Sand, & F. A. Mumpton (Eds), Natural Zeolites: Occurrence, Properties, Use (145-174). Pergamon Press, Elmsford, N.Y.
  • Temel, A. & Gündoğdu, M. N. (1996). Zeolite occurrences and the erionite-mesothelioma relationship in Cappadocia, central Anatolia, Turkey. Mineralium Deposita, 31(6), 539–547. https://doi.org/10.1007/BF00196134
  • Temel, A., Gündoğdu, M. N., Gourgaud, A. & Le Pennec, J-L. (1998). Ignimbrites of Cappadocia (Central Anatolia, Turkey): petrology and geochemistry. Journal of Volcanology and Geothermal Research, 85(1–4), 447-471. https://doi.org/10.1016/S0377-0273(98)00066-3
  • Thien, B. M. J., Kosakowski, G. & Kulik, D. A. (2015). Differential alteration of basaltic lava flows and hyaloclastites in Icelandic hydrothermal systems. Geothermal Energy, 3, 11. https://doi.org/10.1186/s40517-015-0031-7
  • Tomita, K., Yamane, H., Kawano, M. (1993). Synthesis of smectite from volcanic glass at low temperature. Clays and Clay Minerals, 41, 655–661. https://doi.org/10.1346/CCMN.1993.0410603
  • Toprak, V. & Göncüoğlu, M. C. (1993). Tectonic control on the development of the Neogene‐Quaternary Central Anatolian Volcanic Province, Turkey. Geological Journal, 28, 357–369. https://doi.org/10.1002/gj.3350280314
  • Trejda, M., Ziolek, M., Millot, Y., Chalupka, K., Che, M. & Dzwigaj, S. (2010). Methanol oxidation on VSiBEA zeolites: influence of V content on the catalytic properties. Journal of Catalysis, 281(1), 169–176. https://doi.org/10.1016/j.jcat.2011.04.013
  • Utada, M. (2001). Zeolites in Hydrothermally Altered Rocks. Reviews in Mineralogy and Geochemistry, 45(1), 305–322. https://doi.org/10.2138/rmg.2001.45.10
  • Viereck-Goette, L., Lepetit, P., Gürel, A., Ganskow, G., Çopuroğlu, I. & Abratis, M. (2010). Revised volcanostratigraphy of the Upper Miocene to Lower Pliocene Ürgüp Formation, Central Anatolian volcanic province, Turkey. Geological Society of America, 464, 85–112. http://dx.doi.org/10.1130/2010.2464(05)
  • Wang, L., Yang, W. Y., Xin, C. L., Ling, F. X., Sun, W. F., Fang, X. C. & Yang, R., (2012). Synthesis of nano-zeolite IM-5 by hydrothermal method with the aid of PEG and CTAB. Materials Letters, 69, 16–19. http://dx.doi.org/10.1016%2Fj.matlet.2011.11.073
  • Wise, W.S. (2013). Minerals, Zeolites. Reference Module in Earth Systems and Environmental Sciences, Elsevier, ISBN 9780124095489. https://doi.org/10.1016/B978-0-12-409548-9.02906-7
  • Xue, Z., Ma, J., Zhang, T., Miao, H. & Li, R. (2012). Synthesis of nanosized ZSM-5 zeolite with intracrystalline mesopores. Materials Letters, 68, 1–3. https://doi.org/10.1016/j.matlet.2011.10.019
  • Yao, J., Huang, Y. & Wang, H. (2010). Controlling zeolite structures and morphologies using polymer networks. Journal of Materials Chemistry, 20(44), 9827–9831. https://doi.org/10.1039/C0JM01003K
  • Zhang, L., van Laak, A.N.C., de Jongh, P.E. & de Jong, K.P., (2009). Synthesis of large mordenite crystals with different aspect ratios. Microporous and Mesoporous Materials, 126(1–2), 115–124. https://doi.org/10.1016/j.micromeso.2009.05.034
  • Zhang, L., Xie, S., Xin, W., Li, X., Liu, S. & Xu, L. (2011). Crystallization and morphology of mordenite zeolite influenced by various parameters in organic-free synthesis. Materials Research Bulletin, 46(6), 894–900. https://doi.org/10.1016/j.materresbull.2011.02.018