Avanos (Nevşehir, Orta Anadolu) Yöresindeki Geç Kretase Yaşlı Alkalen Plütonik ve Subvolkanik Kayaçların Jeokimyası, Mineral Kimyası ve Kristallenme Koşulları

Avanos’un (Nevşehir) kuzeybatısında yüzeyleyen Karahıdır plütonik ve subvolkanik kayaçları, Orta Anadolu Granitoyidleri içerisinde yer alır. İri K-feldispat kristalleri ile porfirik doku sunan subvolkanik kayaçlar orta-kaba taneli plütonik kayaçları keserek bölgeye yerleşmiştir. Benzer mineral içeriğine sahip olan bu kayaçlar ortoklaz, plajiyoklaz, kuvars, amfibol ve biyotit mineralleri içerir. Mineral kimyası sonuçlarına göre plajiyoklazlar andezin–albit–anortoklaz (Ab57-98), biyotitler Fe’li biyotit (annit–siderofillit) ve amfibol ise Mg-Fe’li hornblent (magnesiohastingsit–ferropargasit) bileşimindedir. Hornblent ve biyotit bileşimleri subalkalen–alkalen magma karakterini yansıtır. Minerallerin jeotermobarometrik sonuçları, Karahıdır plütonu ve subvolkanik kayaçların 0,41-1,91 kbar basınç (P) ve 692-804 °C sıcaklık (T) koşullarında kristalleştiğini göstermiştir. Jeokimyasal olarak, Karahıdır plütonu kuvars siyenit, Karahıdır subvolkaniti ise dasit porfir andezit porfir ve trakiandezit porfir bileşimindedir. Yüksek toplam alkali (K2O+Na2O) içeriği, Fe-indeksi, büyük iyon yarıçaplı (BİYE: Rb, Sr, Ba, K) ve nadir toprak element (NTE) içerikleri ve düşük Co, Ni, Sc bolluğu, düşük CaO/Al2O3 oranı ve düşük Mg# değerleri ile karakteristiktir. Kayaçlar şoşonitik, alkali-kalsik ila alkalen, metaluminyum ila peraluminyum arasında bileşimleri sergiler. Kondrite normalize edilmiş NTE diyagramında, örnekler hafif nadir toprak elementlerce (HNTE) zenginleşmiş (La/Ybn=16,33–29,80) bir desen ve negatif-Eu [(Eu/Eu*)n=0,39–0,66] anomalisi sunar. Kayaçlar, ilksel mantoya göre bazı BİYE (Rb, K ve Th gibi) ve NTE zenginleşirken yüksek çekim alanlı elementlerce (YÇAE; Nb, Zr ve Ti gibi) fakirleşmiştir. Karahıdır plütonik ve subvolkanik kayaçları yitim bileşeni taşıyan çarpışma sonrası gelişmiş alüminyumlu A-tipi granit özelliklerini gösterir. Plütonik ve subvolkanik kayaçlar önemli kıta kabuğu bileşeni içeren litosferik ve astenosferik mantodan türemiştir.

Geochemistry, Mineral Chemistry and Crystallization Conditions of Late Cretaceous Alkaline Plutonic and Subvolcanic Rocks in Avanos (Nevşehir, Central Anatolia)

Karahıdır plutonic and subvolcanic rocks exposed to the northwest of Avanos (Nevşehir) are included in the Central Anatolian Granitoids. Subvolcanic rocks presenting porphyritic texture with coarse K-feldspar crystals were emplaced in the region by cutting into the medium-coarse grained plutonic rocks. These rocks, which have similar mineral content, contain orthoclase, plagioclase, quartz, amphibole and biotite minerals. According to the results of mineral chemistry, plagioclases are in andesine-albite-anorthoclase (Ab57-98), biotites are in Fe biotite (annite-sideophyllite), and amphibole are in Mg-Fe hornblende (magnesiohastingsite-ferroparhasite) compositions. Hornblende and biotite compositions represent a subalkaline–alkaline magma character. The geothermobarometric results of the minerals indicated that the Karahıdır pluton and subvolcanic rocks crystallized under the 0.41-1.91 kbar pressure (P) and 692-804 °C temperature (T) conditions. Geochemically, Karahıdır pluton and subvolcanic rocks have quartz syenite and dacite porphyry, andesite porphyry and trachyandesite porphyry compositions. They are characterized by high total alkali (K2O+Na2O) content, Fe-index value, large ion lithophile (LIL: Rb, Sr, Ba, K) and rare earth (REE) element content and low abundances of Co, Ni and Sc and a low CaO/Al2O3 ratio and low Mg# value. The rocks exhibit shoshonitic, alkali-calcic to alkaline, metaluminous to peraluminous and ferroan in composition. In the chondrite normalized REE diagram, samples exhibit enrichment of light rare earth elements (LREE) with a pattern (La/Ybn=16.33–29.80) and negative-Eu [(Eu/Eu*)n=0.39–0.,66] anomaly. The rocks are relative to the primary mantle, enriched in some large ion lithophile (LIL; Rb, K and Th) and rare earth elements (REE), while depleted in field strength elements (such as HFSE; Nb, Zr, and Ti). The Karahıdır pluton and subvolcanic rocks show typical post-collisional aluminum A-type granite features bearing subduction component. Plutonic and subvolcanic rocks derived from the lithospheric and asthenospheric mantle, which contains an important continental crust component.

___

  • Advokaat, E., Van Hinsbergen, D. V., Kaymakçı, N., Vissers, R. & Hendriks, B. (2014). Late Cretaceous extension and Palaeogene rotation-related contraction in Central Anatolia recorded in the Ayhan-Büyükkışla basin. International Geology Review, 56(15), 1813–1836.
  • Akıman, O., Erler, A., Göncüoğlu, M. C., Güleç, N., Geven, A., Türeli, T. K. & Kadıoğlu, Y. K. (1993). Geochemical characteristics of granitoids along the western margin of the Central Anatolian Crystalline Complex and their tectonic implications. Geological Journal, 28, 371–382.
  • Alçiçek, Ö. N. (2016). Dadağı (Gülşehir-Nevşehir) Çevresinde Uranyum İçin Jeokimyasal Arama Çalışmaları [Yayımlanmamış Doktora Tezi]. T.C. Fırat Üniversitesi Fen Bilimleri Enstitüsü.
  • Anderson, J. L. & Smith, D. R. (1995). The effects of temperature and ƒO2 on the Al-in-hornblende barometer. American Mineralogist, 80, 549–559.
  • Atabey, E. (1989). 1/100.000 ölçekli açınsama nitelikli Türkiye Jeoloji Haritaları Serisi, Kayseri-H 19 paftası. MTA Genel Müdürlüğü.
  • Atabey, E., Tarhan, N., Yusufoğlu, H. & Canpolat, M. (1988). Geology of between Hacıbektaş, Gülşehir and Kalaba (Nevşehir)-Himmetdede (Kayseri) (Rapor no: 8523). General Directorate of Mineral Research and Exploration (MTA), (yayımlanmamış).
  • Aydın, N. S., Göncüoğlu, M. C. & Erler, A. (1998). Latest Cretaceous magmatism in the Central Anatolian Crystalline Complex: Review of field, petrographic and geochemical features. Turkish Journal of Earth Sciences, 7, 259–268.
  • Bonin, B. (2007). A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1-2), 1–29.
  • Bonin, B., Azzouni-Sekkal, A., Bussy, F. & Ferrag, S. (1998). Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: petrological constraints and geodynamic settings. Lithos, 45, 45–70.
  • Boztuğ, D. & Harlavan, Y. (2008). K-Ar ages of granitoids unravel the stages of Neo-Tethyan convergence in the eastern Pontides and Central Anatolia, Turkey. International Journal of Earth Sciences, 97, 585–599.
  • Boztuğ, D. (1998). Post-collisional Central Anatolian alkaline plutonism Turkey. Turkish Journal of Earth Sciences, 7, 145–165.
  • Boztuğ, D., Arehart, G.B., Platevoet, B., Harlavan, Y. & Bonin, B. (2007). High-K, calc-alkaline I-type granitoids from the composite Yozgat batholith generated in a post-collisional setting following continent-oceanic island arc collision in central Anatolia, Turkey. Mineralogy and Petrology, 91, 191–223.
  • Chappell, B. W. & White, A. J. R., 1974. Two contrasting granite types. Pacific Geology, 8, 173–174.
  • Clemens, J. D., Holloway, J. R. & White, A. J. R. (1986). Origin of an A-type granite: experimental constraints. American Mineralogist, 71, 317–324.
  • Collins, W. J., Beams, S. D., White, A. J. R., Chappell, B. W. (1982). Nature and origin of A-type granite with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80, 189–200.
  • Deer, W. A., Howie & R. A., Zussman, J. (1992). An Introduction to the Rock-forming Minerals. Longman Scientific and Technical, ISBN 0470218096, 696 p.
  • Demircioğlu, R. (2014). Gülşehir-Özkonak (Nevşehir) Çevresindeki Kırşehir Masifi ve Örtü Birimlerinin Jeolojisi ve Yapısal Özellikleri [Yayınlanmamış Doktora Tezi]. T.C. Selçuk Üniversitesi Fen Bilimleri Enstitüsü.
  • Deniz, K. & Kadıoğlu, Y. K. (2016). Assimilation and fractional crystallization of foid-bearing alkaline rocks: Buzlukdağ intrusives, Central Anatolia, Turkey. Turkish Journal of Earth Sciences, 25(4), 341–366.
  • Divilioğlu, E. (2022). Avanos (Nevşehir) Civarındaki Plütonik ve Subvolkanik Kayaçların Mineralojik ve Jeokimyasal Özellikleri [Yayınlanmamış Yüksek Lisans Tezi]. T.C. Nevşehir Hacı Bektaş Veli Üniversitesi Fen Bilimleri Enstitüsü.
  • Eby, G. N. (1992). Chemical subdivision of the A-Type granitoids: Petrogenetic and tectonic implications. Geology, 20, 641–644.
  • Edwards, C., Menzies, M. & Thirlwall, M. (1991). Evidence from Muriah, Indonesia, for The Interplay of Supra-Subduction Zone and Intraplate Processes in The Genesis of Potassic Alkaline Magmas. Journal of Petrology, 32(3), 555–592.
  • Frost, B. R. (1991). Oxide Minerals: Petrologic and Magnetic Significance, (D. H. Lindsley (Ed.)), Volume 25, New York, 509 p.
  • Frost, B.R., Barnes, C. G., Collins, W. J. & Arculus, R. J. (2001). A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11), 2033–2048.
  • Frost, C. D. & Frost, B. R. (2011). On ferroan (A-type) granites: their compositional variability and modes of origin. Journal of Petrology 52, 39–53.
  • Giret, A., Bonin, B. & Leger, J. M. (1980). Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring-complexes. Canadian Mineralogist, 18, 481–495.
  • Göncüoğlu, M. C. (1986). Geochronological data from the southern part (Nigde Area) of the Central Anatolian Massif. Mineral Research Exploration Bulletin, 105-106, 83–96.
  • Göncüoğlu, M.C., Toprak, V., Kusçu, İ., Erler, A. & Olgun, E. (1991). Geology of the western part of the Central Anatolian Massif Part 1: Southern Section (Report no: 2909, unpublished).
  • Hammarstrom, J.M. & Zen, E.A. (1986). Aluminium in hornblende: An empirical igneous geobarometer. American Mineralogist, 71, 1297–1313.
  • Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27, 293–305.
  • İlbeyli, N., Pearce, J. A., Thirlwall, M. F. & Mitchell, J.vG. (2004). Petrogenesis of collision-related plutonics in Central Anatolia, Turkey. Lithos, 72, 163–182.
  • Jahn, B. M., Wu, F. Y., Lo, C. H. & Tsai, C. H. (1999). Crust–mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post collisional mafic–ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157, 119–146.
  • Kadıoğlu, Y. K., Dilek, Y. & Foland, K. A. (2006). Slab break-off and syncollisional origin of the Late Cretaceous magmatism in the Central Anatolian crystalline complex. Geological Society of America (special paper), 409, 381–415.
  • King, P. L., White, A. J. R., Chappell, B. W., Allen, C. M. (1997). Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38, 3, 371–391.
  • Koç, A. (2021). Ayhan Havzası’nın (Orta Anadolu) litolojik haritalaması ve jeolojik çıkarımlar: Bir uzaktan algılama ve arazi çalışması entegrasyonu. Türkiye Jeoloji Bülteni, 64(3), 309–348. https://doi.org/10.25288/tjb.913294
  • Köksal, S. (1996). İdiş Dağı-Avanos yöresinin jeolojik ve petrolojik özellikleri (Nevşehir-Orta Anadolu) [Yayımlanmamış Yüksek Lisans Tezi]. Orta Doğu Teknik Üniversitesi Fen Bilimleri Enstitüsü.
  • Köksal, S. & Göncüoğlu, M. C. (2008). Sr and Nd isotopic characteristics of some S-I and A-type granitoids from Central Anatolia. Turkish Journal of Earth Sciences, 17, 111–127.
  • Köksal, S., Göncüoğlu, M. C. & Floyd, P. A. (2001). Extrusive members of postcollisional A-Type magmatism in Central Anatolia: Karahıdır volcanics, Idisdagı-Avanos area, Turkey. International Geology Review, 43, 683–694.
  • Köksal, S., Romer, R. L., Göncüoğlu, M. C. & Toksoy, F. (2004). Timing of post-collisional H-type to A-type granitic magmatism: U–Pb titanite ages from the Alpine central Anatolian granitoids (Turkey). International Journal of Earth Sciences, 93, 974–989.
  • Le Maitre, R. (1984). A proposal by the IUGS Sub commission on the Systematics of Igneous Rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram. Australian Journal of Earth Sciences, 31, 243–255.
  • Leake, B. E., Woolly, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J. & Krivovichev, V. G. (1997). Nomenclature of Amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals Names. European Journal of Mineralogy, 9, 623–651.
  • Lefebvre, C., Peters, M. K., Wehrens, P. C., Brouwer, F. M., Van Roermund, H. L. M. (2015). Thermal history and extensional exhumation of a high-temperature crystalline complex (Hırkadağ Massif, Central Anatolia). Lithos, 238(15), 156–173.
  • Loiselle, M. C. & Wones, D. R. (1979). Characteristics of anorogenic granites. Geological Society of America (Abstracts with Programs), 11, 468 p.
  • Luhr, J. F., Carmichael, I. S. E. & Varekamp, J. C. (1984). The 1982 eruptions of El Chicón Volcano, Chiapas, Mexico: Mineralogy and petrology of the anhydrite-bearing pumices. Journal of Volcanology and Geothermal Research, 23, 69–108.
  • Maniar, P. D. & Piccoli, P. M. (1989). Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635–643.
  • Molina, J. F., Scarrow, J. H. & Montero, F. B., 2009. High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia. Contributions to Mineralogy and Petrology, 158, 69–98.
  • Nachit, H., Razafimahefa, N., Stussi, J. M. & Carron, J. P. (1985). Composition chimique des biotites et typologie magmatique des granitoides. Comptes Rendus Hebdomadaires de I'Acadimie del Sciences, 301(11), 813–818.
  • Okay, A. & Tüysüz, O. (1999). Tethyan Sutures of northern Turkey. Geological Society London Special Publications, 156(1), 475–515.
  • Orhan, A., Akçe, M. A. & Divilioğlu, E. (2022). Nevşehir-Niğde Bölgesi Plütonik Kayaçların Mineral Bileşimleri ve Kristalizasyon Koşullarının (P-T) Araştırılması (Proje no: ABAP21F22,). NEÜBAP Nevşehir, 74 s. (yayınlanmamış).
  • Orhan, A. & Demirbilek, M. (2018). Kapadokya bölgesi (Nevşehir, Orta Anadolu) kalk-alkalen ve alkalen plütonik/subvolkanik kayaçların petrografik ve jeokimyasal özellikleri. Türkiye Jeoloji Bülteni, 61(1), 23–50. https://doi.org/10.25288/tjb.358171
  • Patino Douce, A.E. (1997). Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25, 743–746.
  • Rickwood, P. C. (1989). Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22, 47–263.
  • Ridolfi, F. (2021). Amp-TB2: An updated model for calcic amphibole thermobarometry. Minerals, 11(3), 324.
  • Ridolfi, F., Renzulli, A. & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160, 45–66.
  • Rollinson, H. R. (1993). Using geochemical data: evolution, presentation, interpretation. Longman Scientific and Technical, 352.
  • Rudnick, R. L. (1995). Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33, 267–309.
  • Schmidt, M. W. (1992). Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110, 304–310.
  • Seymen, İ. (1981). Kaman (Kırşehir) dolayında Kırşehir Masifi’nin stratigrafisi ve metamorfizması. Türkiye Jeoloji Bülteni, 24(2), 7–14. https://jmo.org.tr/resimler/ekler/049a9571563f351_ek.pdf
  • Sun, S. S. & McDonough, W. F. (1989). Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In A.D. Saunders & M.J. Norry, (Eds.), Magmatism in the Ocean Basins (pp. 313-345). Geological Society, London, Special Publications, 42.
  • Tischendorf, G., Gottesmann, B., Förster, H. J. & Trumbull, R. B. (1997). On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(408), 809–834.
  • Tulloch, A. J., Challis, G. A. (2000). Emplacement depths of Paleozoic‐Mesozoic plutons from western New Zealand estimated by hornblende‐AI geobarometry. New Zealand Journal of Geology and Geophysics, 43(4), 555–567.
  • Uchida, E., Endo, S., Makino, M. (2007). Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 57(1), 47–56.
  • Uçakcıoğlu, S. (1988). Nevşehir (Gülşehir) ve Civarı Uranyum Aramaları Raporu (Rapor no: 8453). MTA Derleme Raporu.
  • Vache, R. (1963). Akdağmadeni kontakt yatakları ve bunların Orta Anadolu Kristalinine karşı olan jeolojik çevresi. Maden Tetkik ve Arama Dergisi, 60, 22–36.
  • Van Hinsbergen, D. J. J., Maffione, M., Plunder, A., Kaymakçı, N., Ganerød, M., Hendriks, B. W. H., Corfu, F., Gürer, D., Gelder, G.I.N.O., Peters, K., McPhee, P. J., Brouwer, F. M., Advokaat, E., Vissers, R. L. M. (2016). Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites, Turkey. Tectonics, 35(4), 983–1014.
  • Whalen, J. B., Currie, K. L, Chappell, B. W. (1987). A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 407–419.
  • Whalen, J. B., Jenner, G. A., Longstaffe, F. J., Robert, F. & Gariepy, C. (1996). Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians. Journal of Petrology, 37(6), 1463–1489.
  • Whitney, D. L., Hamilton, M. A. (2004). Timing of high-grade metamorphism in central Turkey and the assembly of Anatolia. Journal of the Geological Society, 161(5), 823–828.
  • Whitney, D. L., Teyssier, C., Dilek, Y., Fayon, A. K., (2001). Influence of orogen-normal collision vs. wrench-dominated tectonics on metamorphic P-T-t paths, Central Anatolia Crystalline Complex, Turkey. Journal of Metamorphic Geology, 19(4), 411–432.
  • Winchester, J., Floyd, P. A. (1977). Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20, 325–343.
  • Wones, D. R. (1989), Significance of the assemblage titanite+magnetite+quartz in granitic rocks. American Mineralogist, 74, 744–749.
  • Wu, F., Sun, D., Huimin, L., Jahn, B. & Wilds, S., 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology, 187, 143–173.
  • Yalınız, K. M., Floyd, P. & Göncüoğlu, M. C. (1996). Suprasubduction zone ophiolites of Central Anatolia: geochemical evidence from the Sarıkaraman ophiolite, Aksaray, Turkey. Mineralogical Magazine, 60, 697–710.
  • Yalınız, M. K. ve Göncüoğlu, M. C. (1998). Orta Anadolu ofiyolitlerinin genel jeolojik özellikleri ve dağılımı. Yerbilimleri, 19(2), 19–30.
  • Yang, Z. Y., Wang, Q., Zhang, C., Dan, W., Zhang, X. Z., Qi, Y., Xia, X. P. & Zhao, Z. H. (2018). Rare earth element tetrad effect and negative Ce anomalies of the granite porphyries in southern Qiangtang Terrane, central Tibet: new insights into the genesis of highly evolved granites. Lithos, 312–313, 258–73.