Üzümdeki bazı insektisit kalıntılarının yıkama işlemleriyle azaltılması

İnsektisit kullanımı tarımda zararlı kontrolü için en yaygın metottur. Bu çalışmada yıkama işlemlerinin üzümler üzerindeki insektisit kalıntılarının (chlorpyrifos-methyl ve lambda-cyhalothrin) azaltılmasına etkisi araştırılmıştır. Deneme Türkiye’de Manisa İli-Sarıgöl ilçesinde 2020 yılında Sultana çekirdeksiz üzüm bağında kurulmuştur. Metot doğrulama, geri kazanım, ölçüm limiti, tekrarlanabilirlik ve kesinlik ile gerçekleştirilmiştir. İnsektisit içermeyen üzüm numuneleri her pestisit için 0.5, 1 ve 5 kat MRL seviyelerinde sabitlenmiştir. Chlorpyrifos-methyl ve lambda-cyhalothrin geri alımları, sırasıyla %102 ve %101 olarak bulunmuştur. Tüm QuEChERS yönteminin geri kazanımı %101 olarak bulunmuştur. Bu rakamlar SANTE geri kazanım limitleri (%60-140) arasındadır. İnsektisitlerin tespit limitleri, MRL'nin altında bulunmuştur. Bağda üzümlere dört defa insektisit uygulanmıştır. Son insektisit uygulamasının 0., 2., 4. ve 7. günlerinde üzümler hasat edilmiş ve çeşme suyu, sitrik ve asetik asit ve ultrasonik yıkama işlemlerine tabi tutulmuştur. Yıkama işlemi kalıntıları azaltmış ve artan yıkama süresiyle kalıntının azalma oranları artmıştır. İlerleyen hasat zamanları ile kalıntının giderilmesi azalmıştır. Sitrik ve asetik asit yıkama ve ultrasonik yıkama, musluk suyu ile yıkamadan daha etkili bulunmuştur.

Reduction of some insecticide residues from grapes with washing treatments

Insecticide application is the most common method of insect control in agriculture. Efficiency of washing treatments in reduction of insecticide (chlorpyrifos-methyl and lambda-cyhalothrin) residues from grapes were investigated in this study. The trial was established in a Sultana seedless vineyard in Sarıgöl District, Manisa Province, Turkey in 2020. Method verification was performed with the recovery, limit of quantification and precision. Pesticide-free grapes were spiked with 0.5, 1 and 5 times of MRL for pesticides. The recovery of chlorpyrifos-methyl and lambda-cyhalothrin were 102 and 101% respectively. QuEChERS method yielded an overall-recovery of 101%. These figures were within the SANTE recovery limits (60-140%) and the detection limits of the insecticides were below the MRLs. Grapes in a vineyard were sprayed with insecticides four times and harvested 0, 2, 4 and 7 d after the last spray. Washing (tap water, citric and acetic acid) and ultrasonic cleaning treatments were applied to harvested grapes. Washing treatments decreased residue levels and reductions increased with prolonged washing durations. Reductions also decreased with prolonged harvest durations from the last spray. The citric and acetic acid washing, and ultrasonic-cleaning methods provided more efficient reduction than washing with tap water.

Kaynakça

Acoglu, B., P. Yolcı Ömeroglu & Ö. Copur, 2018. The effect of food processing on pesticide residues and processing factors. Journal of Food and Feed Science Technology, 19 (1): 42-54.

Anonymous, 2011.Bitki veya bitkisel ürünlerde bitki koruma ürünlerinin kalıntı denemelerinin yapılması ile ilgili standart deneme metodu. (Web page: https://www.tarim.gov.tr/TAGEM/Belgeler/yayin/22.pdf) (Date accessed: September 2020) (in Turkish).

Anonymous, 2020. Pestisitlerin kalıntı limitlerinin değerlendirilmesinde kullanılacak işleme faktörleri veritabanı. (Web page: https://www.tarimorman.gov.tr/GKGM/Belgeler/DB_Gida_Isletmeleri/isleme_faktorleri_veritabani.xlsm) (Date accessed: January 2021) (in Turkish).

Buakham, R., S. Songsermpong & C. Eamchotchawalit, 2012. Kinetics of the reduction of pesticide residues in vegetables by ultrasonic cleaning. Asian Journal of Food and Agro-Industry, 5 (5): 364-373.

CAC, 2003. Representative commodities/samples for validation of analytical procedures for pesticide residues. In codex alimentarius commission guidelines on good laboratory practice in pesticide residue analysis. CAC/GL 40-1993. (Web page: http://www.fao.org/input/download/standards/378/cxg_040e.pdf) (Date accessed: September 2020).

Corrias, F., A. Atzei, C. Lai, F Dedola, E. Ibba, G. Zedda, F. Canu & A. Angioni, 2020. Effects of industrial processing on pesticide multiresidues transfer from raw tomatoes to processed products. Foods, 9 (10): 1-15.

Çatak, H., B. Polat & O. Tiryaki, 2020. Farklı yıkama uygulamaları ile kapya biberlerde pirimiphos-methyl kalıntısının giderilmesi. Anadolu Tarım Bilimleri Dergisi, 35 (1): 97-105 (in Turkish with abstract in English).

Çatak, H. & O. Tiryaki, 2020. Insecticide residue analyses in cucumbers sampled from Çanakkale open markets. Turkish Journal of Entomology, 44 (4): 449-460.

Çelik, S., Ş. Kunç & T. Aşan, 1995. Degradation of some pesticides in the field and effect of processing. Analyst, 120 (6): 1739-1743.

EC, 2002. Commission Directive 2002/63/EC of 11 July 2002 Establishing Community Methods of Sampling for the Official Control of Pesticide Residues in and on Products of Plant and Animal Origin and Repealing. Directive 79/700/EEC. Official Journal of European Commission 2002, L 187/30, 1-14.

EU, 2020. EU - Pesticides database (Web page: https://ec.europa.eu/food/plant/pesticides/eu-pesticidesatabase/public/ ?event=activesubstance.detail&language=EN&selectedID=911) (Date accessed: September 2020).

EURACHEM, 2014. The fitness for purpose of analytical methods -a laboratory guide to method validation and related topics. Second Edition (Web page: http://www.eurachem.org) (Date accessed: September 2020).

Gölge, Ö. & B. Kabak, 2018. Pesticide residues in table grapes and exposure assessment. Journal of Agricultural and Food Chemistry, 66 (7): 1701-1713.

Hassan, H. Ü., E. Elsayed, AE-RA. El-Raouf & S. N. Salman, 2019. Method validation and evaluation of household processing on reduction of pesticide residues in tomato. Journal of Consumer Protection and Food Safety, 14 (1): 31-39.

Heshmati, A., A. Rahimi, A. Vahidinia, M. Taheri & A. Nili-Ahmadabadi, 2020. Dissipation behavior and risk assessment of fungicide and insecticide residues in grape under open-field, storage and washing conditions. Journal of Cleaner Production, 270 (122287): 1-11.

İçli, N. & D. Tahmas Kahyaoğlu, 2020. Investigation of pesticide residues in fresh Sultani grapes and antioxidant properties of fresh/sun-dried/oven-dried grapes. Turkish Journal of Agriculture & Forestry, 44: (4) 350-360.

IRAC, 2020. Mode of action classification scheme. Insecticide Resistance Action Committee (IRAC). Version 9.4 (Web page: https://irac-online.org/documents/moaclassification) (Date accessed: September 2020).

Khadre, M. A., A. E. Yousef & J. G. Kim, 2001. Microbial aspects of ozone applications in food: a review. Journal of Food Science, 66 (9): 1242-1252.

Kong, Z. Q., F. S. Dong, J. Xu, X. G. Liu, J. Li & Y. B. Li, 2012. Degradation of acephate and its metabolite methamidophos in rice during processing and storage. Food Control, 23 (1): 149-153.

Lehotay, S. J., 2007. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulphate: collaborative study. Journal of AOAC International, 90 (2): 485-520.

Lehotay, S. J., K. Mastovska & A. R. Lightfield, 2005. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. Journal of AOAC International, 88 (2): 615-629.

Lozowicka, B., M. Jankowska, I. Hrynko & P. Kaczynski, 2016. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environmental Monitoring and Assessment, 188 (1): 51-69.

Lozowicka, B., P. Kaczyński, E. Rutkowska, M. Jankowska & I. Hrynko, 2013. Evaluation of pesticide residues in fruit from Poland and health risk assessment. Agricultural Science, 4 (5): 106-111.

Omeroglu, P. Y., D. Boyacioğlu, A. Ambrus, A. Karaali & S. Saner, 2012. An overview on steps of pesticide residue analysis and contribution of the individual steps to the measurement uncertainty. Food Analytical Methods, 5 (6): 1469-1480.

Önçağ, G., 1975. Ege Bölgesi’nde salkım güvesi (Lobesia botrana Den.-Schiff.)’ nin tanınması, yayılışı, biyolojisi, zararı, doğal düşmanları ve kimyasal savaş imkanları üzerine araştırmalar. T.C. Gıda Tarım ve Hayvancılık Bakanlığı, Zirai Mücadele ve Zirai Karantina Genel Müdürlüğü Araştırma Serisi, Teknik Bülten No: 26: İzmir, 68 s (in Turkish).

Osman, K. A., A. I. Al-Humaid, K. N. Al-Redhaiman & R. A. El-Mergawi, 2014. Safety methods for chlorpyrifos removal from date fruits and its relation with sugars, phenolics and antioxidant capacity of fruits. Journal of Food Science and Technology, 51 (9): 1762-1772.

Özel, E. & O. Tiryaki, 2019. Elma ve işlenmiş ürünlerinde imidacloprid ve indoxacarb kalıntılarının belirlenmesi. Bitki Koruma Bülteni, 59: 23-32 (in Turkish with abstract in English).

Polat, B. & O. Tiryaki, 2019. Determination of some pesticide residues in conventional-grown and IPM-grown tomato by using QuEChERS method. Journal of Environmental Science and Health B, 54 (2):112-117.

Polat, B. & O. Tiryaki, 2020. Assessing washing methods for reduction of pesticide residues in capia pepper with LC-MS/MS. Journal of Environmental Science and Health Part B, 55 (1): 1-10.

PPDB, 2020. Pesticides properties data base. (Web page: https://sitem.herts.ac.uk/aeru/ footprint/es/atoz.htm) (Date accessed: November 2020).

Randhawa, M. A., M. N. Anjum, M. S. Butt, M. Yasin & M. Imran, 2014a. Minimization of imidacloprid residues in cucumber and bell pepper through washing with citric acid and acetic acid solutions and their dietary intake assessment. International Journal of Food Properties, 17 (5): 978-986.

Randhawa, M. A., M. N. Anjum, M. Asi, A. Ahmed & H. Nawaz, 2014b. Field incurred endosulfan residues in fresh and processed vegetables and dietary intake assessment. International Journal of Food Properties, 17 (5): 1109-1115.

SANTE, 2019. Analytical quality control and method validation procedures for pesticides residues analysis in food and feed. SANTE/ /12682/2019. (Web page: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_ guidelines_wrkdoc_2019-12682.pdf) (Date accessed: November 2020).

SAS, 1999. SAS Institute. SAS/STAT 9.1 User’s Guide. 1999, Cary, NC.

Turgut, C., H. Örnek & T. Cutright, 2011. Determination of pesticide residues in Turkey’s table grapes: the effect of integrated pest management, organic farming, and conventional farming. Environmental Monitoring and Assessment,173 (2): 315-323.

TÜİK, 2018. Turkish Statistical Institute. (Web page: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr) (Date accessed: July 2019) (in Turkish).

TÜİK, 2019. Turkish Statistical Institute. (Web page: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr) (Date accessed: September 2020) (in Turkish).

TURKAK, 2019. Metodun geçerli kılınması ve doğrulanması için bilgilendirme kılavuzu. (Web page: https://secure.turkak.org.tr/TURKAKSITE/docs/bilgilendirme_kilavuzlari/METODUN_GE%C3%87ERL%C4%B0_KILINMASI_VE_DOGRULANMASI_ICIN_BILGILENDIRME_KILAVUZU_20052019_1625.pdf) (Date accessed: November 2020) (in Turkish).

UGRL, 2020. Pestisit validasyon prosedürleri rehber dokumanı gıda ve yemde pestisit kalıntıları analizi için analitik kalite kontrol ve metot validasyonu prosedürleri. (Web page: https://www.tarimorman.gov.tr/GKGM/Belgeler/DB_ Gida_Kont/Pestisit_El_Kitabi.pdf) (Date accessed: January 2021) (in Turkish).

Zengin, E. & İ. Karaca, 2017. Uşak ilinde örtü altı üretimi yapılan domateslerdeki pestisit kalıntılarının belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21 (2): 554-559 (in Turkish with abstract in English).

Zhao, L., J. Ge, F. Liu & N. Jiang, 2014. Effects of storage and processing on residue levels of chlorpyrifos in soybeans. Food Chemistry, 150: 182-186.

Zhou, Q., Y. Bian, Q. Peng, F. Liu, W. Wang & F. Chen, 2019. The effects and mechanism of using ultrasonic dishwasher to remove five pesticides from rape and grape. Food Chemistry, 298 (125007): 1-8.

Kaynak Göster

Bibtex @araştırma makalesi { entoted843754, journal = {Turkish Journal of Entomology}, issn = {1010-6960}, eissn = {2536-491X}, address = {}, publisher = {Türkiye Entomoloji Derneği}, year = {2021}, volume = {45}, pages = {125 - 137}, doi = {10.16970/entoted.843754}, title = {Reduction of some insecticide residues from grapes with washing treatments}, key = {cite}, author = {Polat, Burak} }
APA Polat, B . (2021). Reduction of some insecticide residues from grapes with washing treatments . Turkish Journal of Entomology , 45 (1) , 125-137 . DOI: 10.16970/entoted.843754
MLA Polat, B . "Reduction of some insecticide residues from grapes with washing treatments" . Turkish Journal of Entomology 45 (2021 ): 125-137 <https://dergipark.org.tr/tr/pub/entoted/issue/57898/843754>
Chicago Polat, B . "Reduction of some insecticide residues from grapes with washing treatments". Turkish Journal of Entomology 45 (2021 ): 125-137
RIS TY - JOUR T1 - Reduction of some insecticide residues from grapes with washing treatments AU - Burak Polat Y1 - 2021 PY - 2021 N1 - doi: 10.16970/entoted.843754 DO - 10.16970/entoted.843754 T2 - Turkish Journal of Entomology JF - Journal JO - JOR SP - 125 EP - 137 VL - 45 IS - 1 SN - 1010-6960-2536-491X M3 - doi: 10.16970/entoted.843754 UR - https://doi.org/10.16970/entoted.843754 Y2 - 2021 ER -
EndNote %0 Türkiye Entomoloji Dergisi Reduction of some insecticide residues from grapes with washing treatments %A Burak Polat %T Reduction of some insecticide residues from grapes with washing treatments %D 2021 %J Turkish Journal of Entomology %P 1010-6960-2536-491X %V 45 %N 1 %R doi: 10.16970/entoted.843754 %U 10.16970/entoted.843754
ISNAD Polat, Burak . "Reduction of some insecticide residues from grapes with washing treatments". Turkish Journal of Entomology 45 / 1 (Mart 2021): 125-137 . https://doi.org/10.16970/entoted.843754
AMA Polat B . Reduction of some insecticide residues from grapes with washing treatments. TED. 2021; 45(1): 125-137.
Vancouver Polat B . Reduction of some insecticide residues from grapes with washing treatments. Turkish Journal of Entomology. 2021; 45(1): 125-137.
IEEE B. Polat , "Reduction of some insecticide residues from grapes with washing treatments", Turkish Journal of Entomology, c. 45, sayı. 1, ss. 125-137, Mar. 2021, doi:10.16970/entoted.843754

19593 11888

Arşiv
Sayıdaki Diğer Makaleler

Üzümdeki bazı insektisit kalıntılarının yıkama işlemleriyle azaltılması

Burak POLAT

Kök lezyon nematodlarının, Pratylenchus spp. (Tylenchida: Pratylenchidae) üç nohut çeşidinde gelişmesinin incelenmesi

İrem AYAZ, Ece Börteçine KASAPOĞLU ULUDAMAR, Tohid BEHMAND, Halil ELEKCİOĞLU

Farklı bitki türlerinin Türkiye’den iki Ditylenchus dipsaci Kühn, 1857 (Tylenchida: Anguinidae) popülasyonuna hassasiyetleri

Elif YAVUZASLANOGLU, Gamze AKSAY

Cercopis sanguinolenta (Scopoli, 1763) (Hemiptera: Auchenorrhyncha: Cercopidae) ikilemi ve Türkiye'den nadir Cercopis Fabricius, 1775 türlerinin yeniden tanımlanması

Ersin DEMİREL, Hisamiddin DİNÇ

Adana İli (Türkiye)’nde bir yonca tarlasında Yonca yaprakböceği, Gonioctena fornicata (Brüggemann, 1873) (Coleoptera: Chrysomelidae)’nin zarar durumu ve popülasyon dinamiği

Ekrem ATAKAN, Yusuf DAĞ

Ana yaşının Galleria mellonella (L., 1758) (Lepidoptera: Pyralidae) oğul döllerinin performansına etkisi

Yeşim KOÇ, Evrim SÖNMEZ

24-Epibrassinolidin domateslerde kök-ur nematodu, Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) üzerine etkileri

Çiğdem GÖZEL

Lepidopter zararlılara karşı kullanılan bazı insektisitlerin sera koşullarında Nesidiocoris tenuis (Reuter, 1895) (Hemiptera: Miridae)’e yan etkileri

Hüseyin Yiğit KAYA, Mehmet KEÇECİ

Türkiye Isparta ve Burdur illeri tahıl üretim alanlarında bitki paraziti nematodların dağılımı ve popülasyon yoğunluğu

Fatma Gül GÖZE ÖZDEMİR, Bülent YAŞAR, Halil ELEKCİOĞLU

Orosanga japonica (Melichar, 1898) (Hemiptera: Ricaniidae)’nın nimf ve erginlerine karşı Cuscuta campestris Yunck. (Solanales: Convolvulaceae) ve Lupinus albus L. (Fabales: Fabaceae) bitki ham özütlerinin laboratuvar koşulları altında toksik etkinliği

Muhammet Mustafa AKİNER, Emine KILIÇKAYA SELVİ, Murat ÖZTÜRK, İbrahim GÜNEY, Asu USTA