Farklı Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) popülasyonlarının yerel Bacillus thuringiensis suşlarına duyarlılığı

Domates güvesi, Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) dünya çapında en önemli domates zararlılarından biridir ve mücadele edilmediği takdirde %100 ürün kaybına neden olur. Uzun yıllardır aşırı kullanılan kimyasal insektisitler, zararlıda direnç oluşturmuş ve popülasyonlarını kontrol etmeyi zorlaştırmıştır. Bacillus thuringiensis gibi insektisidal proteinleri eksprese eden biyolojik savaş etmenlerinin kullanımı, zararlı popülasyonlarını baskılamak için geleneksel insektisitlere bir alternatiftir. Bu çalışmada, toprak örneklerinden yeni B. thuringiensis suşları elde etmek için 2021 yılında Bilecik ilinde bir sürvey yapıldı. On üç yerel B. thuringiensis suşu izole edilmiş ve üç farklı tarla popülasyonunun (Samsun, İzmir ve Bilecik) bu suşlara duyarlılığı değerlendirilmiştir. Lepidopteran-aktif toksin genleri içeren B. thuringiensis B3 (Bt-B3) suşu, test edilen tüm T. absoluta popülasyonlarında daha virülent bulundu. Ayrıca Samsun popülasyonu, B3 suşuna İzmir ve Bilecik popülasyonuna göre daha duyarlıydı. Bt-B3'ün LC50 değerleri Samsun, İzmir ve Bilecik popülasyonları için sırasıyla 13.28, 26.06 ve 24.24 ppm olarak belirlendi. İzolatın 16S rRNA gen bölgesinin sekanslanması, B. thuringiensis olduğunu doğrularken, elektron mikroskopisi izolatın bipiramidal, kübik ve küresel insektisidal proteinler ürettiğini ortaya koydu. Çalışma sonuçları, Bt-B3 izolatının Türkiye'de T. absoluta'nın entegre zararlı mücadelesi için umut verici bir biyolojik savaş etmeni olduğunu göstermektedir.

Susceptibility of different Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) populations to indigenous Bacillus thuringiensis strains

Tomato leafminer, Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) is one of the most important tomato pests worldwide and causes 100% product loss if not controlled. Chemical insecticides, which have been overused for many years, have induced resistance in the pests and made it difficult to control their populations in the field. The use of biological agents that express insecticidal proteins, such as Bacillus thuringiensis, is an alternative to conventional insecticides to suppress pest populations. In this study, to recover novel B. thuringiensis strains from soil samples, a survey was conducted in Bilecik province in 2021. Thirteen local B. thuringiensis strains were isolated and the susceptibility of three different field populations (Samsun, İzmir, and Bilecik) of T. absoluta to these strains was evaluated. Bacillus thuringiensis B3 (Bt-B3) strain, which contains lepidopteran-active toxin genes, was more virulent for all T. absoluta populations tested. In addition, Samsun population was more sensitive to the B3 strain than İzmir and Bilecik. The LC50 values of Bt-B3 were determined to be 13.28, 26.06 and 24.24 ppm for Samsun, İzmir and Bilecik populations, respectively. Sequencing of the 16S rRNA gene region confirmed that the isolate was B. thuringiensis, while electron microscopy revealed that the isolate produced bipyramidal, cubic and spherical insecticidal proteins. The results of this study indicate that the isolate Bt-B3 appears to be a promising biocontrol agent for integrated pest management of T. absoluta in Türkiye.

___

  • Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18 (2): 265-267.
  • Abo-Bakr, A., E. M. Fahmy, F. Badawy, A. O. Abd El-Latif & S. Moussa, 2020. Isolation and characterization of the local entomopathogenic bacterium, Bacillus thuringiensis isolates from different Egyptian soils. Egyptian Journal of Biological Pest Control, 30: 54 (1-9).
  • Arnó, J. & R. Gabarra, 2011. Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae). Journal of Pest Science, 84 (4): 513-520.
  • Aynalem, B., D. Muleta, J. Venegas & F. Assefa, 2021. Isolation, molecular characterization and pathogenicity of native Bacillus thuringiensis, from Ethiopia, against the tomato leafminer, Tuta absoluta: Detection of a new high lethal phylogenetic group. Microbiological Research, 250: 126802 (1-10).
  • Bala, I., M. M. Mukhtar, H. K. Saka, N. Abdullahi & S. S. Ibrahim, 2019. Determination of insecticide susceptibility of field populations of tomato leaf miner (Tuta absoluta) in Northern Nigeria. Agriculture, 9 (1): 7 (1-13).
  • Bravo, A., S. Sarabia, L. Lopez, H. Ontiveros, C. Abarca, A. Ortiz & R. Quintero, 1998. Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Applied and Environmental Microbiology, 64 (12): 4965-4972.
  • Buragohain, P., D. K. Saikia, P. Sotelo-Cardona & R. Srinivasan, 2021. Evaluation of bio-pesticides against the South American tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in India. Horticulturae, 7 (9): 325 (1-15).
  • Desneux, N., M. G. Luna, T. Guillemaud & A. Urbaneja, 2011. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: The new threat to tomato world production. Journal of Pest Science, 84 (4): 403-408.
  • Djenane, Z., F. Nateche, M. Amziane, J. Gomis-Cebolla, F. El-Aichar, H. Khorf & J. Ferré, 2017. Assessment of the antimicrobial activity and the entomocidal potential of Bacillus thuringiensis isolates from Algeria. Toxins, 9 (4): 139.
  • Eski, A. & M. M. Gezgin, 2022. Susceptibility of different life stages of Tenebrio molitor (Coleoptera: Tenebrionidae) to indigenous entomopathogenic fungi. Journal of Stored Products Research, 98: 102008 (1-8).
  • Estruch, J. J., G. W. Warren, M. A. Mullins, G. J. Nye, J. A. Craig & M. G. Koziel, 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proceedings of the National Academy of Sciences of the United States of America, 93 (11): 5389-5394.
  • Giustolin, T. A., J. D. Vendramim, S. B. Alves, S. A. Vieira & R. M. Pereira, 2001. Susceptibility of Tuta absoluta (Meyrick) (Lepidoptera:Gelechiidae) reared on two species of Lycopersicon to Bacillus thuringiensis var. kurstaki. Journal of Applied Entomology, 125 (9-10): 551-556.
  • Hassan, A. A., M. A. Youssef, M. M. A. Elashtokhy, I. M. Ismail, M. Aldayel & E. Afkar, 2021. Isolation and identification of Bacillus thuringiensis strains native of the Eastern Province of Saudi Arabia. Egyptian Journal of Biological Pest Control, 31: 6 (1-11).
  • Jain, D., S. Kachhwaha, R. Jain & S. L. Kothari, 2012. PCR based detection of cry genes in indigenous strains of Bacillus thuringiensis isolated from the soils of Rajasthan. Indian Journal of Biotechnology, 11 (4): 491-494.
  • Kumar, S., G. Stecher, M. Li, C. Knyaz & K. Tamura, 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology & Evolution, 35 (6): 1547-1549.
  • Langa, T. P., K. C. T. Dantas, D. L. Pereira, M. de Oliveira, L. M. S. Ribeiro & H. A. A. Siqueira, 2022. Basis and monitoring of methoxyfenozide resistance in the South American tomato pinworm Tuta absoluta. Journal of Pest Science, 95 (1): 351-364.
  • Pinto, L. M. N. & L. M. Fiuza, 2003. Distribuição de genes cry de Bacillus thuringiensis isolados de solos do Estado do Rio Grande do Sul, Brasil. Ciência Rural, 33 (4): 699-702.
  • Polanczyk, R. A., J. C. Zanúncio & S. B. Alves, 2009. Relationship between chemical properties of the soil and the occurrence of Bacillus thuringiensis. Ciência Rural, 39 (1): 1-5.
  • Prasannakumar, N. R., N. Jyothi, S. Saroja & G. R. Kumar, 2021. Relative toxicity and insecticide resistance of different field population of tomato leaf miner, Tuta absoluta (Meyrick). International Journal of Tropical Insect Science, 41 (2): 1397-1405.
  • Ramalakshmi, A. & V. Udayasuriyan, 2010. Diversity of Bacillus thuringiensis isolated from Western Ghats of Tamil Nadu State, India. Current Microbiology, 61 (1): 13-18.
  • Rashki, M., M. Maleki, M. Torkzadeh-Mahani, S. Shakeri & P. S. Nezhad, 2021. Isolation of Iranian Bacillus thuringiensis strains and characterization of lepidopteran-active cry genes. Egyptian Journal of Biological Pest Control, 31: 87 (1-10).
  • Rosas-García, N. M., M. Mireles-Martínez, J. L. Hernández-Mendoza & J. E. Ibarra, 2008. Screening of cry gene contents of Bacillus thuringiensis strains isolated from avocado orchards in Mexico, and their insecticidal activity towards Argyrotaenia sp. (Lepidoptera: Tortricidae) larvae. Journal of Applied Microbiology, 104 (1): 224-230.
  • Sabbour, M. M. & Y. S. Nayera, 2014. Evaluations of three Bacillus thuringiensis against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in Egypt. International Journal of Science and Research, 3 (8): 2067-2073.
  • Salama, H. S., N. M. Abd El-Ghany & M. M. Saker, 2015. Diversity of Bacillus thuringiensis isolates from Egyptian soils as shown by molecular characterization. Journal of Genetic Engineering and Biotechnology, 13 (2): 101-109.
  • Sandeep Kumar, J., J. Jayaraj, M. Shanthi, M. Theradimani, B. Venkatasamy, S. Irulandi & S. Prabhu, 2020. Potential of standard strains of Bacillus thuringiensis against the tomato pinworm, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Egyptian Journal of Biological Pest Control, 30 (1): 1-7.
  • Santana, M. A., C. C. Moccia-V & A. E. Gillis, 2008. Bacillus thuringiensis improved isolation methodology from soil samples. Journal of Microbiological Methods, 75 (2): 357-358.
  • Silva, T., W. Silva, M. Campos, J. Silva, L. Ribeiro & H. Siqueira, 2016. Susceptibility levels of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to minor classes of insecticides in Brazil. Crop Protection, 79: 80-86.
  • Siqueira, H. A. A., R. N. C. Guedes, D. B. Fragoso & L. C. Magalhaes, 2001. Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). International Journal of Pest Management, 47 (4): 247-251.
  • Smirnoff, W. A., 1962. A staining method for differentiating spores, crystals and cells of Bacillus thuringiensis (Berliner). Journal of Insect Pathology, 4 (3): 384-386.
  • Terzidis, A. N., S. Wilcockson & C. Leifert, 2014. The tomato leaf miner (Tuta absoluta): Conventional pest problem, organic management solutions? Organic Agriculture, 4 (1): 43-61.
  • Thammasittirong, A. & T. Attathom, 2008. PCR-based method for the detection of cry genes in local isolates of Bacillus thuringiensis from Thailand. Journal of Invertebrate Pathology, 98 (2): 121-126.
  • Wang, J., A. Boets, J. Van Rie & G. Ren, 2003. Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China. Journal of Invertebrate Pathology, 82 (1): 63-71.
  • Weisburg, W. G., S. M. Barns, D. A. Pelletier & D. J. Lane, 1991. 16S ribosomal DNA amplifcation for phylogenetic study. Journal of Bacteriology, 173 (2): 697-703.
  • Yalçın, M., S. Mermer, L. D. Kozacı & C. Turgut, 2015. Insecticide resistance in two populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) from Turkey. Turkish Journal of Entomology, 39 (2): 137-145.
  • Zhang, G., X. Xian, Y. Zhang, W. Liu, H. Liu, X. Feng, D. Ma, Y. Wang, Y. Gao, R. Zhang, Q. Li, F. Wan, W. Fu, J. Wang, M. Kuang, W. Yang, X. Rao, Y. Gao & A. Dai, 2021. Outbreak of the South American tomato leafminer, Tuta absoluta, in the Chinese mainland: Geographic and potential host range expansion. Pest Management Science, 77 (12): 5475-5488.
Türkiye Entomoloji Dergisi-Cover
  • ISSN: 1010-6960
  • Başlangıç: 1977
  • Yayıncı: Galip KAŞKAVALCI
Sayıdaki Diğer Makaleler

Doğu hamam böceği Blatta orientalis (L., 1758) (Blattodea: Blattidae)’in trofositlerindeki makromoleküllerin histokimyasal ve ince yapı analizi

Tuğba ZÜLFİKAROĞLU, Gamze TURGAY İZZETOĞLU, Mehmet Salih YIKILMAZ, Savaş İZZETOĞLU

Türkiye’nin Kuzey Doğu Anadolu Bölgesi (Erzurum: Yakutiye ve Uzundere) Ichneumonidae (Hymenoptera) türleri üzerine faunistik bir araştırma

Gülnur BARİK, Saliha ÇORUH

Bazı akarisitlerin domates pas akarı ve avcısı Amblyseius swirskii Athias-Henriot, 1962 (Acari: Phytoseiidae)’ye toksik etkileri

Ayşenur KOLCU, Nabi Alper KUMRAL

Rattus norvegicus (Berkenhout, 1769) (Rodentia: Muridae)’un entomopatojen bakteriler ile enfekte böcek kadavralarına tepkisinin belirlenmesi

Derya ULUĞ

Türkiye’nin kuzeydoğusundan erythraeoid akarların (Acari: Erythraeoidea) yeni kayıtları

İbrahim KARAKURT

Farklı Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) popülasyonlarının yerel Bacillus thuringiensis suşlarına duyarlılığı

Ardahan ESKİ

“Bayramiç Beyazı” nektarinlerde insektisit kalıntılarının belirlenmesi ve tüketiciler için risk analizi

Elif Betül SERBES, Osman TİRYAKİ

Bazı yerel sarımsak genotip ve köy çeşitlerinin soğan sak nematoduna, Ditylenchus dipsaci (Kühn, 1857) Filipjev, 1936 (Rhabditida: Anguinidae) karşı dayanıklılıklarının belirlenmesi

Atilla ÖCAL, Gülay BEŞİRLİ, Emre EVLİCE, Elif YAVUZASLANOĞLU, İbrahim Halil ELEKCİOĞLU

Nemrut Dağı'ndan (Bitlis, Türkiye) iki yeni Hilara Meigen, 1822 (Diptera: Empididae) türü

Mustafa Cemal ÇİFTÇİ

Türkiye’deki erkek Helophorus (Helophorus) aquaticus (L., 1758) (Coleoptera: Helophoridae)’un morfolojik varyasyonları üzerine bir araştırma

Ahmet POLAT