İntrauterin gelişme geriliğine bağlı olarak fötal sıçan beyninde nörogenezisde oluşan değişikliklerin immun dokukimyasal yöntemle araştırılması

Amaç: İntrauterin gelişme geriliği (İUGG); yenidoğan ve çocukluk çağı gelişimsel bozukluklarla sonuçlanan, öğrenme ve davranış problemleri yanısıra mental retardasyona da yol açan gebeliğin en iyi bilinen komplikasyonlarından biridir. Çalışmamızın amacı, deneysel intrauterin gelişme geriliği oluşturulan fötal sıçan beyninde nörogenezis neurogenesis in experimental intrauterine growth sürecindeki olası değişiklerin vimentin ile gliaların ve retarded fetal rat brains with vimentin for glial cells and nöron spesifik enolaz (NSE) ile nöronların immün dokukimyasal yöntemle araştırılmasıdır. Gereç ve yöntem: Fertilize edilen dişi sıçanlar 3 gruba ayrıldı: Grup I: Kontrol grubu: Maternal sıçan-lara herhangi bir işlem yapılmadı. Grup II: Deney grubu (İUGG): Maternal sıçanlara 18. günde bilateral uterin arter ligasyonu yapıldı. Grup III: Sham grubu: Maternal sıçanlara 18. günde bilateral uterin arter ligasyonu dışındaki cerrahi işlem uygulandı. 20. günde sezeryan ile fötuslar çıkarıldı. Fötal beyinler, vimentin ve nöron spesifik enolaz ile immun dokukimyasal boyandı ve ışık mikroskobunda incelendi. Bulgular: Kontrol gruplarında ventriküler zon ve subventriküler zonda vimentin ve NSE olumlu immun boyanma görüldü. İUGG oluşturulan fötal sıçan beyni hipokampal ve bazal nukleus alanlarında vimentin ve NSE olumlu boyanmasının azaldığı saptandı. Sonuç: İUGG oluşturulan fötal sıçan beyni hipokampal ve bazal nukleus alanlarında vimentin ve NSE olumlu boyanmasının azalması bu moleküllerin bulunduğu hücrelerin gelişim sürecinde hipoksi ve iskemik koşullarından etkilenmiş olabileceğini göstermektedir. Postnatal olarak yeni gelişen nöron ve nöroglial hücrelerinkaynağı olan ventriküler ve subventrikülar zonların proliferasyon sırasında etkilenmiş olmasının; mitoz, migrasyon ve maturasyona zararlı olabileceği bilgisi ile uyumludur

Immunohistochemical study of the changes during neurogenesis in the fetal rat brain related intrauterine growth retardation

Purpose: Intrauterine growth retardation (IUGR) is one of the well known com-plications of pregnancy which results with infant and childhood postnatal abnormal developmental disorders including educational and behavioral problems as well as mental retardation. The aim of this study is to investigate possible alterations during Sonuç: İUGG oluşturulan fötal sıçan beyni hipokampal ve bazal nukleus alanlarında vimentin ve NSE olumlu boyanmasının azalması bu moleküllerin bulunduğu hücrelerin gelişim sürecinde hipoksi ve iskemik koşullarından etkilenmiş olabileceğini göstermektedir. Postnatal olarak yeni gelişen nöron ve nöroglial hücrelerinkaynağı olan ventriküler ve subventrikülar zonların proliferasyon sırasında etkilenmiş olmasının; mitoz, migrasyon ve maturasyona zararlı olabileceği bilgisi ile uyumludur

___

  • Low JA, Handley-Derry MH, Burke SO, Peters RD et al.: Association of intrauterine fetal growth retardation and learning deficits at age 9 to 11 years. Pediatr Res 1997; 42(5): 684-9.
  • Simmons RA, Templeton LJ, Gertz SJ: Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 2001; 50: 2279-86.
  • Soothill PW, Ajayi RA, Nicolaides KN: Fetal biochemistry in growth retardation, Early Hum Dev 1992; 29(1-3): 91-7.
  • Harvey D, Prince J, Bunton J, Parkinson C, et al. Abilities of children who were small-for-gestational-age babies. Pediatrics 1982; 69(3): 296-300.
  • Rantakallio P. A 14-year follow-up of children with normal and abnormal birth weight for their gestational age. A population study. Acta Paediatr Scand 1985; 74(1): 62-9.
  • Edwards AD, Yue X, Cox P, Hope PL, et al. Apoptosis in the brains of infants suffering intrauterine cerebral injury. Pediatr Res 1997; 42(5): 684-9.
  • Valcamonico A, Danti L, Frusca T, Soregaroli M et al. Absent end-diastolic velocity in umbilical artery: risk of neonatal morbidity and brain damage. Am J Obstet Gynecol 1994; 170(3): 796-801.
  • Villar J, de Onis M, Kestler E, Bolanos F et al. The differential neonatal morbidity of the intrauterine growth retardation syndrome. Am J Obstet Gynecol 1990; 163: (1 Pt 1): 151-7.
  • Morgane PJ, Austin-LaFrance R, Bronzino J, Tonkiss J et al. Prenatal malnutrition and development of the brain. Neurosci Biobehav Rev 1993; 17(1): 91-128.
  • Bisignano M, Rees S. The effects of intrauterine growth retardation on synaptogenesis and mitochondrial formation in the cerebral and cerebellar cortices of fetal sheep. Int J Dev Neurosci 1988; 6(5): 453-60.
  • Engelbregt MJT, Houdıjk MECAM, Snıjders CP, Delemarre- Van De Waal HA. The effects of intra-uterine growth retardation and postnatal undernutrition on onset of puberty in male and female rats. Pediatric Research 2000; 48(6): 803-807.
  • Gonzalez-Barrios JA, Escalante B, Valdés J, Léon-Chàvez BA et al. Nitric oxide and nitric oxide synthases in the fetal cerebral cortex of rats following transient uteroplacental ischemia. Brain Research 2002; 945: 114-122.
  • Lane RH, Ramirez RJ, Tsirka AE, Kloesz JL et al. Utero- placental insufficiency lowers the threshold towards hypoxia- induced cerebral apoptosis in growth-retarded fetal rats. Brain Research 2001; 895: 186-193.
  • Mallard EC, Rehn A, Rees S, Tolcos M et al.: Ventruculomegaly and reduced hippocampal volume following intrauterine growth-restriction: implications for the aetiology of schizophrenia. Schizophrenia Research 1999; 40: 11-21.
  • Nitsos I, Rees S. The effects of intrauterine growth retarda- tion on the development of neuroglia in fetal guinea pigs. An immunohistochemical and an ultrastructural study. Int J Dev Neurosci 1990; 8(3): 233-44.
  • Rees S, Harding R. The effects of intrauterine growth retardation on development of the Purkinje cell dendritic tree in the cerebellar cortex of fetal sheep: a note on the ontogeny of the Purkinje cell. Int J Dev Neurosci 1988; 6(5): 461-9.
  • Rees S, Bocking AD, Harding R. Structure of the fetal sheep brain in experimental growth retardation. J Dev Physiol 1988; 10(3): 211-25.
  • Reid GJ, Flozak AS, Simmons RA. Placental expression of insulin-like growth factor receptor-1 and insulin receptor in the growth-restricted fetal rat. J Soc Gynecol Investig 2002; 9(4): 210-14.
  • Simmons RA, Templeton LJ, Gertz SJ. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 2001; 50: 2279-86.
  • Ulfig N, Neudorfer F, Bohl J. Distribution patterns of vimentin- immunoreactive structures in the human prosencephalon during the second half of gestation. J Anat 1999; 195 (Pt 1): 87-100
  • Albright CD, Tsai AY, Mar MH, Zeisel SH. Choline availability modulates the expression of TGFbeta1 and cytoskeletal proteins in the hippocampus of developing rat brain. Neurochem Res 1998; 23(5): 751-8.
  • Dalmau I, Finsen B, Tonder N, Zimmer J et al. Development of microglia in the prenatal rat hippocampus. J Comp Neurol 1997; 377(1): 70-84.
  • Tuba A, Kallai L, Kalman MA. Rapid replacement of vimentin- containing radial glia by glial fibrillary acidic protein- containing astrocytes in transplanted telencephalon. J Neural Transplant Plast 1997; 6(1): 21-9.
  • Sarnat HB. Vimentin immunohistochemistry in human fetal brain: methods of standard incubation versus thermal intensification achieve different objectives. Pediatr Dev Pathol 1998; 1(3): 222-9.
  • Schmechel DE, Brightman MW, Marangos PJ. Neurons switch from non-neuronal enolase to neuron-specific enolase during differentiation. Brain Res 1980; 190(1): 195-214.
  • Hayakawa M, Shunji J, Ssaki J, Watanabe K. Neuropatho- logical changes in the cerebrum of IUGR rat induced by synthetic thromboxan A2. Early Hum Develop 1999; 55: 125-136.
  • Sasaki J, Fukami E, Mimura S, Hayakawa M et al. Abnormal cerebral neuronal migration in a rat model of intrauterine growth retardation induced by synthetic thromboxane A2. Early Hum Develop 2000; 58: 91-99.
  • Fukami E, Nakyama A, Sasaki J, Mimura S et al. Under- expression of neural cell adhesion molecule and neuro- trophic factors in rat brain following thromboxane A2-induced intrauterine growth retardation. Early Hum Develop 2000; 58: 101-110.
  • Jang M, Shin M, Kim E, Kim C. Acute alcohol intoxication decreases cell proliferation and nitric oxide synthase expression in dentate gyrus of rats. Toxicology Letters 2002; 133: 255- 262.
  • Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 1996; 16(6): 2027-33.
  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4(11): 1313-7.
  • Levison SW, Goldman JE. Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. J Neurosci Res 1997; 48(2): 83-94.
  • Hollyday M. Neurogenesis in the vertebrate neural tube. Int J Devl Neuroscience 2001; 19,161-173.
  • Sarnat HB. Histochemistry and immunocytochemistry of the developing ependyma and choroid plexus. Microsc Res Tech 1998; 41(1): 14-28.
  • Staagard M, Mollard K. The developing neuroepitehelium in human embriyonic and fetal brain studied with vimentin- 11