Yazılım Gözden Geçirme Toplantılarında Çevrimiçi İşbirlikçi Araçların Kullanımı Üzerine Öğrencilerle Bir Çalışma

Yazılım geliştirme süreci için takım toplantıları olmazsa olmaz aktivitelerdendir. Bu toplantılar, genellikle, yüz yüze yapılsa da COVID-19 salgını gibi değişen küresel koşullar, yazılım geliştirme takvimini kesintiye uğratmadan başka türlü çözümlerin sürece acilen dahil olmasını gerektirmektedir ve bu konudaki literatür henüz yeterince olgunlaşmamıştır. Bu çalışmada, Yazılım Mühendisliği uygulamalarına çevrimiçi işbirlikçi araçların entegrasyonunu etkileyen faktörleri, gözden geçirme toplantıları özelinde değerlendirilmesi hedeflenmektedir. Bu amaçla, geleceğin yazılım profesyonelleri olarak nitelenen 73 ikinci ve üçüncü sınıf Yazılım Mühendisliği öğrencisinin önceden tanımlanmış senaryolar üzerinden deneysel gözden geçirme toplantılarına katılımı sağlamıştır. Çalışmanın sonucunda, çevrimiçi işbirlikçi araç kullanımının katılımcıların gerçek performanslarına olumlu etki ettiği ve takım üyeleri arasındaki etkileşimi yüz yüze toplantılara nazaran geliştirdiği, katılımcıların bu tür platformları gelecekteki kariyerlerinde kullanma niyetlerine olumlu katkı sağladığı saptanmıştır.

A Study with Students on Using Online Collaborative Tools in Software Review Meetings

Team meetings are indispensable activities for the software development process. Although these meetings are usually held face-to-face, changing global conditions such as the COVID-19 pandemic require other solutions to be urgently involved without interrupting the software development schedule, and the literature on this subject is not mature enough yet. In this study, it is aimed to evaluate the factors affecting the integration of online collaborative tools into Software Engineering applications, in terms of review meetings. For this purpose, 73 first and second year Software Engineering students, who are qualified as software professionals of the future, participated in the experimental review meetings over predefined scenarios. As a result of the study, it was determined that the use of online collaborative tools had a positive effect on the actual performance of the participants and improved the interaction between team members compared to face-to-face meetings, and contributed positively to the intention of the participants to use such platforms in their future careers.

___

  • M.A. Babar, B. Kitchenham, R. Jeffery, Comparing distributed and face-to-face meetings for software architecture evaluation: A controlled experiment, Empir. Softw. Eng. 13 (2008) 39–62. doi:10.1007/s10664-007-9052-6.
  • A. Begel, R. DeLine, T. Zimmermann, Social media for software engineering, FoSER ’10 Proc. FSE/SDP Work. Futur. Softw. Eng. Res. (2010). doi:10.1145/1882362.1882370.
  • S. Black, R. Harrison, M. Baldwin, A survey of social media use in software systems development, in: Proc. 1st Work. Web 2.0 Softw. Eng., ACM, 2010: pp. 1–5.
  • M.-A. Storey, C. Treude, A. van Deursen, L.-T. Cheng, The impact of social media on software engineering practices and tools, in: Proc. FSE/SDP Work. Futur. Softw. Eng. Res. - FoSER ’10, 2010. doi:10.1145/1882362.1882435.
  • M.-A. Storey, L. Singer, B. Cleary, F. Figueira Filho, A. Zagalsky, The (R) Evolution of Social Media in Software Engineering, FOSE 2014 Proc. Futur. Softw. Eng. (2014). doi:10.1145/2593882.2593887.
  • B. Boyd, A. Townsley, C. Walter, C. Johnson, R. Gamble, Examining Collaboration among Student Teams relying on Web Applications to Coordinate Software Development, in: Proc. 50th Hawaii Int. Conf. Syst. Sci., 2017.
  • V. Stray, N.B. Moe, Understanding coordination in global software engineering: A mixed-methods study on the use of meetings and slack, J. Syst. Softw. 170 (2020) 110717.
  • R. Vallon, B.J. da Silva Estácio, R. Prikladnicki, T. Grechenig, Systematic literature review on agile practices in global software development, Inf. Softw. Technol. (2018). doi:10.1016/j.infsof.2017.12.004.
  • T. Kude, Agile Software Development Teams During and After Covid-19, ESSEC Bus. Sch. (2020) 1. http://knowledge.essec.edu/en/innovation/agile-software-development-during-after-COVID19.html (accessed November 17, 2020).
  • S. Kemp, Digital 2020: July Global Statshot — DataReportal – Global Digital Insights, DataReportal. (2020). https://datareportal.com/reports/digital-2020-july-global-statshot.
  • D. Galin, Software quality assurance: from theory to implementation, 2004.
  • A.A. Alabbadi, R.J. Qureshi, The proposed methods to improve teaching of software engineering, Int. J. Mod. Educ. Comput. Sci. 8 (2016) 13.
  • Venkatesh, Morris, Davis, Davis, User Acceptance of Information Technology: Toward a Unified View, MIS Q. 27 (2003) 425–478. doi:10.2307/30036540.
  • Y. Martínez, C. Cachero, S. Meliá, Empirical study on the maintainability of Web applications: Model-driven Engineering vs Code-centric, Empir. Softw. Eng. 19 (2014) 1887–1920. doi:10.1007/s10664-013-9269-5.
  • A.M. Kaplan, M. Haenlein, Users of the world, unite! The challenges and opportunities of Social Media, Bus. Horiz. 53 (2010) 59–68. doi:10.1016/j.bushor.2009.09.003.
  • P.S. Jothi, M. Neelamalar, R.S. Prasad, Analysis of social networking sites: A study on effective communication strategy in developing brand communication, J. Media Commun. Stud. 3 (2011) 234–242.
  • S.R. Veil, T. Buehner, M.J. Palenchar, A Work-In-Process Literature Review: Incorporating Social Media in Risk and Crisis Communication, J. Contingencies Cris. Manag. 19 (2011) 110–122. doi:10.1111/j.1468-5973.2011.00639.x.
  • A. Ferreira, T. du Plesis, Effect of online social networking on employee productivity, South African J. Inf. Manag. 11 (2009) 1–11. doi:10.4102/sajim.v11i1.397.
  • D. Chaffey, What Is Differ. between Effic. Eff. Mark. Meas. (2014). https://www.smartinsights.com/goal-setting-evaluation/goals-kpis/definition-efficiency-and-effectiveness/.
  • N.B.C. Nawi, A. Al Mamun, N.A.B.M. Nasir, N.M. bt A.H. Shokery, N.B.A. Raston, S.A. Fazal, Acceptance and usage of social media as a platform among student entrepreneurs, J. Small Bus. Enterp. Dev. 24 (2017) 375–393. doi:10.1108/JSBED-09-2016-0136.
  • Z. Wei, J. Chen, W. Gao, B. Li, L. Zhou, Y. He, K.-F. Wong, H. Kong, A. Science, An Empirical Study on Uncertainty Identification in Social Media Context, ACL 2013 -- Proc. 51st Annu. Meet. Assoc. Comput. Linguist. (Volume 2 Short Pap. (2013). doi:10.1142/9789813223615_0007.
  • D.R. Fortin, R.R. Dholakia, Interactivity and vividness effects on social presence and involvement with a web-based advertisement, J. Bus. Res. 58 (2005) 387–396. doi:10.1016/S0148-2963(03)00106-1.
  • Y.-T. Wang, L.-L. Wu, H.-C. Chen, M.-Y. Yeh, Interactivity of Social Media and Online Consumer Behavior: the Moderating Effects of Opinion Leadership, in: ICIS 2012 - Proc. Int. Conf. Inf. Syst., 2012.
  • C.S. Lee, L. Ma, News sharing in social media: The effect of gratifications and prior experience, Comput. Human Behav. 28 (2012) 331–339. doi:10.1016/j.chb.2011.10.002.
  • M.S. Eastin, R. LaRose, Internet Self-Efficacy and the Psychology of the Digital Divide, J. Comput. Commun. 6 (2006). doi:10.1111/j.1083-6101.2000.tb00110.x.
  • K. Celuch, S. Goodwin, S.A. Taylor, Understanding small scale industrial user internet purchase and information management intentions: A test of two attitude models, Ind. Mark. Manag. 36 (2007) 109–120. doi:10.1016/j.indmarman.2005.08.004.
  • N. Michaelidou, N.T. Siamagka, G. Christodoulides, Usage, barriers and measurement of social media marketing: An exploratory investigation of small and medium B2B brands, Ind. Mark. Manag. 40 (2011) 1153–1159.
  • E.M. Rogers, Diffusion of innovations, Simon and Schuster, 2010.
  • S.M. Chan-Olmsted, M. Cho, S. Lee, User perceptions of social media: A comparative study of perceived characteristics and user profiles by social media, Online J. Commun. Media Technol. 3 (2013) 149–178.
  • G. Lee, Y.H. Kwak, An Open Government Maturity Model for social media-based public engagement, Gov. Inf. Q. (2012). doi:10.1016/j.giq.2012.06.001.
  • D.F. Coskunçay, M.P. Çakir, Examination of computer supported collaborative business process modeling with activity theory, in: Proc. XV Int. Conf. Hum. Comput. Interact., ACM, 2014: p. 15.
  • MacCallum, R.C., Browne, M., Sugawara H.M. Power analysis and determination of sample size for covariance structure modeling, Psychological methods, 1(2), 1996, pp.130.
  • Akman, İ., Turhan C., Hacaloglu, T. Utilization of Online Collaborative Tools in Software Engineering: An Empirical Study on Review Meetings, 6th International Conference on Computer Science and Engineering (UBMK), IEEE, 2021, pp. 654-659.