Sanal Cerrahi Uygulamalarında Görselleştirme Altyapısı

Sanal gerçeklik kullanılan cerrahi eğitimi geleneksel yöntemlere göre büyük potansiyel taşımaktadır. Nöroşirürji gibi hassas mikrocerrahi yöntemler kullanılan cerrahi branşlarda cerrahların yetişmesi için kullanılan araçlar kısıtlıdır. Cerrahi tecrübe ancak çok sayıda cerrahi işlem sonrasında kazanılabilmektedir. Tecrübesiz cerrahların yaptığı hatalı ya da eksik cerrahi müdahaleler hastalarda ciddi doku hasarı ve fonksiyonel kısıtlanmaya neden olmakta ve hatta felç ile sonuçlanabilmektedir. Günümüzde cerrahi eğitim öncelikle gözlem, daha sonra da deney hayvanları, kadavralar ve en sonunda hastalar üzerinde yapılmaktadır. Bu çalışmanın amacı nöroşirürjide öncelikle spinal ve kranial cerrahide eğitim ve cerrahi planlamada kullanılmak üzere yeni bir sanal gerçeklik eğitim sistemi geliştirmektir. VISPLAT bir sanal gerçeklik simülasyon platformudur. Hastaya-özel bir system olarak tasarlanmıştır. BT görüntülerinden 3B nesnelerin modellenmesi, cerrahi işlemlerin görüntülenmesi, dokunsal etkileşim ve cerrahi işlemlerde mekanistik materyal çıkarma modelleri için bir çerçeve oluşturur.

Visualisation Platform for Virtual Surgery

Virtual reality based surgical training have a great potential as an alternative to traditional training methods. In neurosurgery, state-of-the-art training devices are limited. The surgical experience accumulates only after so many surgical procedures. Incorrect surgical movements can be destructive. Traditional techniques for training in surgery is based on observations, using animals and cadavers, and finally real patients. The aim of this research is the development of a virtual reality training system for spinal and cranial surgery in neurosurgery. VISPLAT is a platform for virtual surgery simulation. It is designed as a patient-specific system. It acts as a framework for modeling 3D objects from CT images, visualization of the surgical operations, haptic interaction and mechanistic material-removal models for surgical operations.

___

  • [1] Voxel-Man, On the WWW, URL http://www.voxel-man.de/news/
  • [2] Desai, J., 2008. Robotic Haptic Feedback System for Bx/RFA of Breast Tumor Under Continuous MRI. On the WWW, URL http://www.researchgrantdatabase.com/g/5R01 EB008713-02/Robotic-Haptic-FeedbackSystem-for-Bx-RFA-of-Breast-Tumor-underContinuous-MRI/
  • [3] LapSim, On the WWW, URL http://www.virtualsurgery.vision.ee.ethz.ch/Sur gicalScience/LapSim
  • [4] Montgomery, K., “The Spring Simulation Platform”, On the WWW, URL http://simworkshops.stanford.edu/06_0627/SP RING-Kevin%20Mont-ppt.pdf
  • [5] Eriksson, M., “A Haptic and Virtual Reality Temporal Bone Surgery Simulator”, On the WWW, URL http://www.md.kth.se/research/projects/mda/p1 3.shtml?eng
  • [6] Eriksson, M., Flemmer, H., and Wikander, J., “A Haptic and Virtual Reality Skull Bone Surgery Simulator”, 2005. World Haptics Conference, March.
  • [7] Eriksson, M., Flemmer, H., and Wikander, J., “A Haptic and Virtual Reality Temporal Bone Surgery Simulator”, Submitted for publication in Advanced Robotics Magazine, March.
  • [8] Bryan, J., Stredney, D., Wiet, G., and Sessanna, D., “Virtual temporal bone dissection: a case study”, On the WWW, URL http://portal.acm.org/citation.cfm?id=601762
  • [9] Ohio Supercomputer Center, 2008 Annual Research Report, On the WWW, URL http://www.osc.edu/press/media/docs/2008_Re search_Report.pdf
  • [10] CRS4 Visual Computing, On the WWW, URL http://www.crs4.it/vic/projects/
  • [11] Hearn, D., Baker, M.P., Computer Graphics, Prentice-Hall, 2004
  • [12] Cho, J., Jung, H., Lee, J., Lee, D., and Ahn, H., 2007. “Haptic Rendering of Drilling into Femur Bone with Graded Stiffness”, International Conference Frontiers in the Convergence of Bioscience and Information Technologies, pp. 525-530.
  • [13] Cho, J., Jung, H., Yu, I., Lee, K., Lee, D., Ahn, H., Park, I., Yeo, S., and Han, S., 2007. “Surface-Data-Based Haptic Rendering for Simulation of Surgery of Closed Reduction and Internal Fixation”, Proceedings of the 29th Annual Int. Conference of the IEEE EMBS Cité Internationale, Lyon, France, August.
  • [14] Hoogen, J., Riener, R., and Schmidt, G., 2002. “Control aspects of a robotic haptic interface for kinesthetic knee joint simulation”, Control Engineering Practice, November, 10(11), pp.1301-1308.
  • [15] Park, H., and Lee, J., 2004. “Adaptive impedance control of a haptic interface”, Mechatronics, April, 14(3), pp. 237-253.
  • [16] Lee, C. D., Lawrence, D. A., Lucy, L.Y., and Pao, Y., 2004. “Isotropic force control for haptic interfaces, Control Engineering Practice”, Mechatronic Systems, November, 12(11), pp. 1423-1436.
  • [17] Lee, S. S., and Lee, J. M., 2003. “Design of a general purpose 6-DOF haptic interface”, Mechatronics, September, 13(7), pp. 697-722.
  • [18] Agus, M., Giachetti, A., Gobbetti, E., Zanetti, G., and Zorcolo, A., 2003. "Adaptive techniques for real-time haptic and visual simulation of bone dissection", IEEE Virtual Reality Conference 2003 (VR 2003), pp. 102.
  • [19] Balijepalli, A., and Kesavadas, T., 2003. "A Haptic Based Virtual Grinding Tool", 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS'03), pp. 390.
  • [20] Agus, M., Giachetti, A., Gobbetti, E., Zanetti, G., and Zorcolo, A., 2002. "Real-Time Haptic and Visual Simulation of Bone Dissection,", IEEE Virtual Reality Conference 2002 (VR 2002), pp. 209.
  • [21] Chang, Y. H., Chen, Y. T., Chang, C.W., and Lin, C.L., 2008. "Development Scheme of Haptic-Based System for Interactive Deformable Simulation", Computer-Aided Design, in press. October.
  • [22] Möller, T., 1997. “A Fast Triangle-Triangle Intersection Test”, JGTOOLS: Journal of Graphics Tools, 2(2), pp.25-30.
  • [23] Tropp, O., Tal, A., and Shimshoni, I., 2006. “A Fast Triangle to Triangle Intersection Test for Collision Detection”, Computer Animation and Computer Worlds.
  • [24] Held, M., 1997. “A Collection of Efficient and Reliable Intersection Tests”, Journal of Graphics Tools, 2(4), pp.25-44.
  • [25] Devillers, O., Guigue, P., 2002. “Faster Triangle-Triangle Intersection Tests”, Technical Report 4488, INRIA.
  • [26] Onbaşıoğlu, E., Atalay B., Goularas D., Soydan A., Okyar F. Şafak K., 2010. “Visualization of Burring Operation in Virtual Surgery Simulation”, ASME 10th Biennial Conference on Engineering Systems Design and Analysis ESDA 2010.
  • [27] Onbaşıoğlu, E., Paker,, Y., 1997. “A Comperative Workload-Based Methodology for Comparison of Parallel Computers”, Future Generation Computer Systems, 12, pp.521-54