THE EFFECTS OF ACYCLOVIR ON ANGIOGENESIS IN CHICK CHORIOALLANTOIC MEMBRANE MODEL

THE EFFECTS OF ACYCLOVIR ON ANGIOGENESIS IN CHICK CHORIOALLANTOIC MEMBRANE MODEL

Aims: This study aims to reveal the effects of acyclovir on angiogenesis and to assess the experimental doses. Methods: In the study, the chick chorioallantoic membrane model was used as an experimental model. Forty fertilized eggs were kept at 85-90% relative humidity, below 37°C until the fifth day post-fertil- ization, when the vessels in the chick chorioallantoic membrane model appeared and the drugs were applied. Four different concentrations of acyclovir were chosen to determine the mode of action and dose dependence: 3.55 mg/mL, 7.1 mg/mL, 14.2 mg/mL, and 28.4 mg/mL. Each of the 1 mL total acyclovir concentrations were applied to the chick chorioallantoic membrane surfaces. The chick chorioallantoic membranes treated with sterile distilled water were designated as controls. Eight eggs were used for each test group. After applying the drug, all the eggs were covered with transparent tape and kept under the same conditions throughout the experiment. The results were evaluated 48 hours after the drugs were administered and the results were recorded with a digital camera. Results: In our study, it was observed that 3.55 mg/mL acyclovir concentration shows the reduced density of capillaries around the pellet and no change in the number of capillaries. Both 7.1 mg/mL and 14.2 mg/mL concentrations of acyclovir caused a local reaction that was restricted to the membrane and it was attributed to local crystallization reaction. The concentration of 28.4 mg/mL had a toxic effect on the eggs. Conclusion: In this study, it was found that acyclovir has a very weak anti-angiogenic effect dose-dependently at the concentrations used. Considering that an observational model was used in our study, quantitative studies are needed for assessing anti-angiogenic effects in the future. There is also a need for further studies to elucidate the effects of acyclovir on vascular endothelial growth factor level and which stage of the angiogenesis-related process it is specifically effective on.

___

  • 1. Balfour HH. Antiviral drugs. N Engl J Med 1999;340(16):1255-68.
  • 2. Gnann JW, Barton NH, Whitley RJ. Acyclovir: mechanism of action, pharma- cokinetics, safety, and clinical applications. Pharmacotherapy 1983;3(5):275-83.
  • 3. Razonable RR. Antiviral drugs for viruses other than human immunodeficiency virus. Mayo Clin Proc 2011;86(10):1009-26.
  • 4. De Clercq E. Antiviral drugs in current clinical use. J Clin Virol 2004;30(2):115- 33.
  • 5. De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev 2016;29(3):695-747.
  • 6. Gold D, Corey L. Acyclovir prophylaxis for herpes simplex virus infection. Anti- microb Agents Chemother 1987;31(3):361-7.
  • 7. Field HJ, Goldthorpe SE. Antiviral drug resistance. Trends Pharmacol Sci 1989;10(8):333-7.
  • 8. Shaimerdenova M, Karapina O, Mektepbayeva D et al. The effects of antiviral treatment on breast cancer cell line. Infect Agents Cancer 2017;12(1):18.
  • 9. Benedetti S, Catalani S, Palma F et al. Acyclovir induces cell cycle perturbation and apoptosis in jurkat leukemia cells and enhances chemotherapeutic drug cyto- toxicity. Life Sci 2018;215:80-5.
  • 10. Lokman NA, Elder ASF, Ricciardelli C et al. Chick chorioallantoic membrane (CAM) assay as an in vivo model to study the effect of newly identified molecules on ovarian cancer invasion and metastasis. Int J Mol Sci 2012;13(8):9959-70.
  • 11. Nowak-Sliwinska P, Segura T, Iruela-Arispe ML. The chicken chorioallanto- ic membrane model in biology, medicine, and bioengineering. Angiogenesis 2014;17(4):779-804.
  • 12. FDA-approved drugs (website) (cited 2021 October 10). Available from: URL: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.pro- cess&ApplNo=020089.
  • 13. Zhou Q, Qi C, Li Y et al. A novel four-step system for screening angiogenesis inhibitors. Mol Med Rep 2013;8:1734-40.
  • 14. Bürgermeister J, Paper DH, Vogl H et al. LaPSvSd1, a (1-->3)-beta-galac- tan sulfate and its effect on angiogenesis in vivo and in vitro. Carbohydr Res 2002;337(16):1459-66.
  • 15. Paper DH, Vogl H, Franz G. Low-molecular-weight galactan sulfates as angiogen- esis inhibitors. Contribu to Oncol 1999;54:191-9.
  • 16. Karaman H, Tufek A, Karaman E et al. Opioids inhibit angiogenesis in a chorio- allantoic membrane model. Pain Phys 2017;20(2):11-21.
  • 17. Kılıççalan İ, Erkovan A, Sen E. Caenorhabditis elegans and angiogenesis. Turkish Med Stud J 2019;6(1):37-41.
  • 18. Brand M, Lamandé N, Larger E et al. Angiotensinogen impairs angiogenesis in the chick chorioallantoic membrane. J Mol Med 2007;85(5):451-60.
  • 19. Ribatti D. The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech Dev 2016;141:70-7.
  • 20. Kominsky SL, Subramaniam PS, Johnson HM et al. Inhibitory effects of IFN-gamma and acyclovir on the glioblastoma cell cycle. J Interferon Cytokine Res 2000;20(5):463-9.
  • 21. Lu H, Han Y-J, Xu J-D et al. Proteomic characterization of acyclovir-induced nephrotoxicity in a mouse model. PLoS One (serial online) 2014;9(7). Avail- able from: URL: https://journals.plos.org/plosone/article?id=10.1371/journal. pone.0103185.
  • 22. Rajabi M, Mousa SA. The role of angiogenesis in cancer treatment. Biomedicines 2017;5(2):34.
  • 23. Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, conse- quences, challenges and opportunities. Cell Mol Life Sci 2019;77(9):1745-70.
  • 24. Fleischer R, Johnson M. Acyclovir nephrotoxicity: a case report highlighting the importance of prevention, detection, and treatment of acyclovir-induced ne- phropathy. Case Rep Med (serial online)2010. Available from: URL: https://www. ncbi.nlm.nih.gov/pmc/articles/PMC2939444/.
  • 25. West DC, Thompson WD, Sells PG et al. Angiogenesis assays using chick chorio- allantoic membrane. Methods Mol Med 2001;46:107-29.
  • 26. Hillen F, Griffioen AW. Tumour vascularization: sprouting angiogenesis and be- yond. Canc Metastasis Rev 2007;26(3-4):489-502.
Turkish Medical Student Journal-Cover
  • ISSN: 2148-4724
  • Başlangıç: 2014
  • Yayıncı: Trakya Üniversitesi
Sayıdaki Diğer Makaleler

EVALUATION OF DEMOGRAPHIC, CLINIC AND GENETIC CHARACTERISTICS OF PATIENTS ADMITTED TO TRAKYA UNIVERSITY HOSPITAL WITH HYPERTROPHIC CARDIOMYOPATHY

Burak BARDAKÇI, Berfin TAN, Sarper KIZILKAYA, Ceren YÜKSEL, Servet ALTAY

THE EFFECTS OF ACYCLOVIR ON ANGIOGENESIS IN CHICK CHORIOALLANTOIC MEMBRANE MODEL

Ibrahim KILICCALAN, Bekir Nihat DOĞRUL, Abdulbaki ERKOVAN, Ekrem Samet AŞÇI

THE EFFECTS OF VEGETARIAN DIET ON THE CARDIOVASCULAR SYSTEM

Nazlıcan CENGİZ, Tülay Ece ÖZÇELİK, Beyza YILMAZ, Nisanur BAYAR, Selma Arzu VARDAR

SUCCESSFUL MANAGEMENT OF PERIPARTUM CARDIOMYOPATHY IN A YOUNG FEMALE PATIENT

Ceren YÜKSEL, Bengisu ÇIRAY, Mustafa Alperen KOŞUCU, Servet ALTAY

HYDATID CYST IN A HEART FAILURE PATIENT MIMICKING PHANTOM TUMOR

Irmak ÖZYİĞİT, Beliz KOÇYİĞİT, Servet ALTAY

EFFECTS OF ESTROGEN ON CORONARY ARTERY CALCIFICATION AND THE RELATIONSHIP BETWEEN OSTEOPOROSIS AND CARDIOVASCULAR DISEASES IN POSTMENOPAUSAL WOMEN

Alican GÜVENÇ, Ceren YILMAZ, Buse BALTA, Zeynep YILDIZ, Selma Arzu VARDAR

LONG-TERM SURGICAL OUTCOMES OF PATIENTS WITH PHACOMORPHIC GLAUCOMA

Mustafa Ömer İZZETTİNOĞLU, Ayşe KÜPELİ ÇINAR, Rüveyde GARİP

POSTPARTUM THYROIDITIS

Onur ÇELİK, İbrahim KILIÇÇALAN

BILATERAL ELECTROCONVULSIVE THERAPY FOR POST-TRAUMATIC STRESS DISORDER COMORBID TO DEPRESSION

Erhan KAVAKBASI, Goktug Mert CIFTCI, Bernhard T. BAUNE

CLINICAL AND HISTOPATHOLOGICAL EVALUATION OF EYELID LESIONS: RETROSPECTIVE ANALYSIS OF TERTIARY MEDICAL CENTER REFERRALS

Mustafa Ömer İZZETTİNOĞLU, Fatih Erkan AKAY, Rüveyde GARİP