Vertebrate insulin alters the expression profile of steroid hormone ecdysone receptor complex components and autophagy-related genes in the pupal fat body of the silkworm, Bombyx mori

Vertebrate insulin alters the expression profile of steroid hormone ecdysone receptor complex components and autophagy-related genes in the pupal fat body of the silkworm, Bombyx mori

Various studies have shown that the insulin-like peptides present in insects and investigation of their possible effects on insectphysiology have significance for clarifying the evolutionary developmental period of insulin. The insect fat body is an organ analog tovertebrate adipose tissue and liver. In insects which do not have feeding activity during pupal and adult stages such as Bombyx mori,substances and energy required for continuation of life and development of tissues and organs are provided by the fat body via theautophagy process. In this study, we aimed to analyze the action of mammalian insulin in Bombyx pupae by studying its effects onphysiological parameters, and the transcript levels of both ecdysone receptors and autophagy-related genes Atg8 and Atg 12. Our resultsshowed that the biochemical contents of the Bombyx mori fat body and the expression of genes related to autophagy and ecdysonereceptor complex elements responded differently to insulin treatment depending on the application time.

___

  • Arrese EL, Soulages JL (2010). Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology 55: 207-225. doi: 10.1146/annurev-ento-112408-085356
  • Beckstead RB, Lam G, Thummel CS (2005). The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis. Genome Biology 6: R99. doi: 10.1186/gb-2005-6-12-r99
  • Bednářová A, Kodrík D, Krishnan N (2013). Unique roles of glucagon and glucagon-like peptides: Parallels in understanding the functions of adipokinetic hormones in stress responses in insects. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 164(1): 91-100. doi: 10.1016/j.cbpa.2012.10.012
  • Berry DL, Baehrecke EH (2007). Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131(6): 1137-1148. doi: 10.1016/j.cell.2007.10.048
  • Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Current Biology 11(4): 213-221. doi: 10.1016/S0960- 9822(01)00068-9
  • Butterworth FM (1972). Adipose tissue of Drosophila melanogaster. V. Genetic and experimental studies of an extrinsic influence on the rate of cell death in the larval fat body. Developmental Biology 28(2): 311-325. doi: 10.1016/0012-1606(72)90016-4
  • Cao C, Brown MR (2001). Localization of an insulin-like peptide in brains of two flies. Cell and Tissue Research 304(2): 317-321. doi: 10.1007/s004410100367.
  • Chang YY, Neufeld TP (2010). Autophagy takes flight in Drosophila. FEBS Letters 2 584(7): 1342-1349. doi: 10.1016/j. febslet.2010.01.006.
  • Chapman RF (1998). The Insects: Structure and Function. Cambridge, UK: Cambridge University Press.
  • Codogno P, Meijer AJ (2005). Autophagy and signaling: their role in cell survival and cell death. Cell Death & Differentiation 12: 1509-1518. doi: 10.1038/sj.cdd.4401751
  • Colombani, J, Bianchini L, Layalle S, Pondeville E, Dauphin- Villemant C et al. (2005). Antagonistic actions of ecdysone and insulin determine final size in Drosophila. Science 310: 667- 670. doi: 10.1126/science.1119432.
  • Gibson UE, Heid CA, Williams PM (1996). A novel method for realtime quantitative RT-PCR. Genome Research 6(10): 995-1001. doi: 10.1101/gr.6.10.995
  • Grönke S, Müller G, Hirsch J, Fellert S, Andreou A et al. (2007). Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biology 5(6): e137. doi: 10.1371/journal. pbio.0050137
  • Ishizaki H and Suzuki A (1994). The brain secretory peptides that control moulting and metamorphosis of the silkmoth, Bombyx mori. The International Journal of Developmental Biology 38(2): 301-310.
  • Jiang C, Baehrecke EH, Thummel CS (1997). Steroid regulated programmed cell death during Drosophila metamorphosis. Development 124(22): 4673-4683. doi: 10.1038/sj.cdd.4400753
  • Kamoshida Y, Fujiyama-Nakamura S, Kimura S, Suzuki E, Lim J et al. (2012). Ecdysone receptor (EcR) suppresses lipid accumulation in the Drosophila fat body via transcription control. Biochemical and Biophysical Research Communications 4 421(2): 203-207. doi: 10.1016/j.bbrc.2012.03.135
  • Komuves L, Sass M, Kovaacs J (1985). Autophagocytosis in larval midgut cells of Pieris brassicae during metamorphosis. Cell and Tissue Research 240: 215-221. doi: 10.1007/BF00217577
  • Lee CY, Baehrecke EH (2001). Steroid regulation of autophagic programmed cell death during development. Development 128: 1443-1455.
  • Liu Y, Zhou S, Maa L, Tian L, Wanga S et al. (2010). Transcriptional regulation of the insulin signaling pathway genes by starvation and 20-hydroxyecdysone in the Bombyx fat body. Journal of Insect Physiology 56: 1436-1444. doi: 10.1016/j. jinsphys.2010.02.011
  • Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R et al. (2007). FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metabolism 6(6): 458-471. doi: 10.1016/j.cmet.2007.11.001
  • Manière G, Rondot I, Büllesbach EE, Gautron, F, Vanhems E et al. (2004). Control of ovarian steroidogenesis by insulinlike peptides in the blowfly (Phormia regina). Journal of Endocrinology 181(1): 147-156.
  • McPhee CK, Baehrecke EH (2009). Autophagy in Drosophila melanogaster. Biochimica et Biophysica Acta 1793: 1452-1460. doi: 10.1016/j.bbamcr.2009.02.009
  • Meijer AJ, Lorin S, Blommaart EF, Codogno P (2015). Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids 47: 2037-2063. doi: 10.1007/ s00726-014-1765-4
  • Mensch J, Lavagnino N, Carreira VP, Massaldi A, Hasson E et al. (2008). Identifying candidate genes affecting developmental time in Drosophila melanogaster: pervasive pleiotropy and gene-by-environment interaction. BMC Developmental Biology 8: 78. doi: 10.1186/1471-213X-8-78
  • Nagasawa H, Kataoka H, Isogai A, Tamura S, Suzuki A et al. (1984). Amino-terminal amino acid sequence of the silkworm prothoracicotropic hormone: homology with insulin. Science 226: 1344-1345. doi: 10.1073/pnas.83.16.5840
  • Nagasawa H, Kataoka H, Isogai A, Tamura S, Suzuki A et al. (1986). Amino acid sequence of a prothoracicotropic hormone of the silkworm Bombyx mori. Proceedings of the National Academy of Sciences of the United States of America 83: 5840-5843. doi: 10.1271/bbb1961.55.73
  • Ohnishi E, Chatani F (1977). Biosynthesis of ecdysone in the isolated abdomen of the silkworm, Bombyx mori. Development, Growth & Differentiation 19(1): 67-70. doi: 10.1111/j.1440- 169X.1977.00067.x|
  • Rusten TE, Lindmo K, Juhasz G, Sass M, Seglen PO (2004). Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Developmental Cell 7(2): 179-192. doi: 10.1016/j. devcel.2004.07.005
  • Saegusa H, Mizoguchi A, Kitahora H, Nagasawa H, Suzuki A et al. (1992). Changes in the titer of bombyxin–immunoreactive material in hemolymph during the postembryonic development of the silkmoth Bombyx mori. Development, Growth & Differentiation 34 (5): 595-605.
  • Sass M, Kovacs J (1975). Effect of ecdysone and juvenile hormone treatment on the fat body cells of Mamestra brassicae. Acta biologica Academiae Scientiarum Hungaricae 26: 189-196.
  • Satake S, Masumura M, Ishizaki H, Nagata K, Kataoka H et al. (1997). Bombyxin, an insulin-related peptide of insects, reduces the major storage carbohydrates in the silkworm Bombyx mori. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 118(2): 349-357. doi: 10.1016/S0305-0491(97)00166-1
  • Singh R, Kaushik S, Wang Y, Xiang Y, Novak I et al. (2009). Autophagy regulates lipid metabolism. Nature 458: 1131-1135. doi: 10.1038/nature07976
  • Steele JE (1961). Occurrence of a hyperglycæmic factor in the corpus cardiacum of an insect. Nature 192: 680-681. doi: 10.1038/192680a0
  • Steele, JE (1963). The site of action of insect hyperglycemic hormone. General and Comparative Endocrinology 3: 46-52. doi: 10.1016/0016-6480(63)90044-3
  • Swevers L, Cherbas L, Cherbas P, Iatrou K (1996). Bombyx EcR (BmEcR) and Bombyx USP (BmCF1) combine to form a functional ecdysone receptor. Insect Biochemistry and Molecular Biology 26: 217-221. doi: 10.1016/0965- 1748(95)00097-6
  • Tian L, Guo E, Wang S, Liu S, Jiang RJ (2010). Developmental regulation of glycolysis by 20-hydroxyecdysone and juvenile hormone in fat body tissues of the silkworm, Bombyx mori. Journal of Molecular Cell Biology 2(5): 255-263. doi: 10.1093/ jmcb/mjq020
  • Tsukada M, Ohsumi Y (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. Federation of European Biochemical Societies 333(1,2): 169- 174. doi: 10.1016/0014-5793(93)80398-e
  • Van Handel E (1985a). Rapid determination of glycogen and sugar in mosquitoes. Journal of the American Mosquito Control Association 1: 299-304.
  • Van Handel E (1985b). Rapid determination of total lipids in mosquitoes. Journal of the American Mosquito Control Association 1: 302-304.
  • Wigglesworth VB (1972). The Principles of Insect Physiology. 7th edition. London: Chapman & Hall.
  • Jiao Y, Lu Y, Li XY (2015). Farnesoid X receptor: a master regulator of hepatic triglyceride and glucose homeostasis. Acta Pharmacologica Sinica 36(1): 44-50. doi: 10.1038/aps.2014.116
  • Yin VP, Thummel CS (2005). Mechanisms of steroid-triggered programmed cell death in Drosophila. Seminars in Cell and Developmental Biology 16: 237-243. doi: 10.1016/j. semcdb.2004.12.007
Turkish Journal of Zoology-Cover
  • ISSN: 1300-0179
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

First record of Ahaetulla mycterizans (Linnaeus, 1758) (Serpentes: Colubridae) from the Lesser Sunda region, Indonesia, based on molecular and morphological identification

Lilin Ika Nur INDAHSARI, Fatchiyah FATCHIYAH, Eric Nelson SMITH, Nia KURNIAWAN

Identification of causes of death of Baikal seal (Pusa sibirica Gmelin, 1788)

Nina RYADINSKAYA, Ivan MELTSOV, Svetlana SAYVANOVA, Olga ILYINA, Tatyana POMOINIT SKAYA, Inna АNIKIENKO, Alena МOLKOVA, Maria ТABAKOVA

Genetic structure and population dynamics of the silver pheasant (Lophura nycthemera) in southern China

Peng CHEN, Wenjing LU, Liangjie YU, Zhifeng XU, Luzhang RUAN, Junpeng BAI, Yuqing HAN, Chaoying ZHU, Guanglong SUN, Dongqin ZHAO, Zhen ZHANG, Jiang CHENG

Lilin İka Nur INDAHSARI, Fatchiyah FATCHIYAH, Eric Nelson SMITH, Nia KURNIAWAN

Bogdan JOVANOVIĆ, Ethan J. KESSLER, Marija ILIĆ, Nataša TOMAŠEVIĆ KOLAROV, Jelena ĆOROVIĆ, Christopher A. PHILLIPS, Jelka CRNOBRNJA-ISAILOVIĆ

Possible implications of weather variation on reproductive phenology of European common toad in southeastern Europe

Natasa TOMASEVIC KOLAROV, Jelka CRNOBRNJA ISAILOVIC, Bogdan JOVANOVIC, Jelena COROVIC, Christopher A. PHILLIPS, Ethan J. KESSLER, Marija ILIC

Chaoying ZHU, Wenjing LU, Guanglong SUN, Zhen ZHANG, Zhen ZHANG, Liangjie YU, Peng CHEN, Yuqing HAN, Zhifeng XU, Junpeng BAI, Dongqin ZHAO, Luzhang RUAN

A study of genetic diversity among different population of Orthochirus sp. based on cytochrome C oxidase subunit I and 16srRNA sequencing

Hedieh JAFARI, Fatemeh SALABI, Alireza FOROUZAN

Hedieh JAFARI, Fatemeh SALABI, Alireza FOROUZAN

A comparative evaluation of hematological and biochemical parameters between the Italian mullet Mugil cephalus (Linnaeus 1758) and the Turkish mullet Chelon auratus (Risso 1810)

Osman Sabri KESBİÇ, Murat ÇELİK, Rifat TEZEL, Francesco FAZIO, Ümit ACAR, Ferhat YALGIN, Sevdan YILMAZ, Concetta SAOCA, Murat YİĞİT