Molecular identification of eriophyoid mites in Thrace using the 28S and COI genes

Molecular identification of eriophyoid mites in Thrace using the 28S and COI genes

Abstract: Eriophyoid mites are recognized as the second most economically important group among the Acari following spider mites. The identification of eriopyhoid mites traditionally based on morphological characters. However, the size of these diagnostic structures is very small and this often causes misidentification of species. In this study, we used DNA-based identification for five eriophyoid species collected from the Thrace region of Turkey (Aceria erinea, Rhyncaphytoptus ficifoliae, Eriophyes pyri, Aceria massalongoi, Colomerus vitis collected from Juglans regia L., Ficus carica L., Pyrus communis L., Vitex-agnus castus L., Vitis vinifera L., respectively) using both cytochrome oxidase subunit I (MW396744-MW396748) and 28S rRNA (MW396565-MW396571) in combination with morphological taxonomy. A phylogenetic tree has also been constructed for each gene to get a deeper understanding of the evolutionary history of Eriophyoidea. Besides all the molecular data herein obtained are the first eriophyoidea sequences for the country, some of the sequences have been submitted to the public GenBank database for the first time. Further studies are urgently needed to reveal genetic variation within and between eriophyoid species to make accurate species identification using molecular technics.Key words: Eriophyoidea, cytochrome c oxidase subunit I, 28S rRNA, DNA taxonomy

___

  • Amrine JW, Manson DCM (1996). Preparation, Mounting and Descriptive Study of Eriophyoid Mites. pp. 383-396. In: Lindquist, E. E., M. W. Sabelis and J. Bruin (Eds.). Eriophyoid Mites -Their Biology, Natural Enemies and Control. Elsevier. World Crop Pests 6, 785pp
  • Amrine JW, Stasny TA, Flechtman, HWC (2003). Revised keys to world genera of Eriophyidea (Acari: Prostigmata). Indira Publishing House, West Bloomfield, MI.
  • Arribas P, Andújar C, Moraza ML, Linard B, Emerson BC, Vogler AP (2020). Mitochondrial metagenomics reveals the ancient origin and phylodiversity of soil mites and provides a phylogeny of the Acari. Molecular biology and evolution 37 (3): 683-694. doi: 10.1093/molbev/msz255
  • Castalanelli MA, Severtson DL, Brumley CJ, Szito A, Foottit RG et al. (2010). A rapid non-destructive DNA extraction method for insects and other arthropods. Journal of Asia-Pacific Entomology 13 (3): 243-248. doi:10.1016/j.aspen.2010.04.003
  • Chetverikov PE, Cvrković T, Makunin A, Sukhareva S, Vidović B et al. (2015). Basal divergence of Eriophyoidea (Acariformes, Eupodina) inferred from combined partial COI and 28S gene sequences and CLSM genital anatomy. Experimental and Applied Acarology 67 (2): 219-245. doi: 10.1007/s10493-015-9945-9
  • Cruickshank RH (2002). Molecular markers for the phylogenetics of mites and ticks. Systematic and Applied Acarology, 7 (1): 3-14. doi: 10.11158/saa.7.1.1
  • Dabert M (2006). DNA markers in the phylogenetics of the Acari. Biological Letters 43 (2): 97-107.
  • De Lillo E, Craemer C, Amrine JW, Nuzzaci G (2009). Recommended procedures and techniques for morphological studies of Eriophyoidea (Acari: Prostigmata). In Eriophyoid Mites: Progress and Prognoses, Springer, Dordrecht.
  • de Lillo E, Fanelli E, Valenzano D, Monfreda R, Troccoli A et al. (2020). Characterisation of Aceria massalongoi and a histopathological study of the leaf galls induced on chaste trees. Experimental and Applied Acarology 82 (1): 33-57. doi:10.1007/s10493-020-00518- x
  • Denizhan E, Çobanoğlu S (2010). Van Gölü havzasında Ulmus campestris L. (Ulmaceae) üzerinde tespit edilen eriophyoid akarlar (Acari: Prostigmata: Eriophyoidea). Türkiye Entomoloji Dergisi 34 (4): 543-549.
  • Denizhan E, Monfreda R, Cobanoglu S, de Lillo E (2006). Three new Aceria species (Acari: Eriophyoidea) from Turkey. International Journal of Acarology 32 (2): 179-184. doi: 10.1080/01647950608684458
  • Denizhan E, Monfreda R, De Lillo E, Cobanoglu S (2008). Two new species of eriophyoid mites (Acari: Eriophyoidea) associated with Elaeagnaceae in Turkey. Zootaxa 1698 (1): 41-48. doi: 10.11646/zootaxa.1698.1.2
  • Denizhan, E, Monfreda R, De Lillo E, Çobanoğlu S (2015). Eriophyoid mite fauna (Acari: Trombidiformes: Eriophyoidea) of Turkey: new species, new distribution reports and an updated catalogue. Zootaxa 3991 (1): 1-63. doi: 10.11646/zootaxa.3991.1.1
  • DeSalle R, Egan MG, Siddall M (2005). The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical transactions of the royal society B: Biological sciences 360 (1462): 1905-1916. doi: 10.1098/rstb.2005.1722
  • Ekim T, Güner A (2000). The floristic richness of Turkey. Curtis's Botanical Magazine 17 (2): 48-59.
  • Fenton B, Birch ANE, Malloch G, Lanham PG, Brennan, RM (2000). Gall mite molecular phylogeny and its relationship to the evolution of plant host specificity. Experimental & applied acarology 24 (10- 11): 831-861. doi: 10.1023/A:1006488120364
  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.
  • Hall TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41: 95-98.
  • Hebert PD, Cywinska A, Ball SL, Dewaard JR (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences 270 (1512): 313- 321. doi:10.1098/rspb.2002.2218
  • Katoh K, Rozewicki J, Yamada KD (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in bioinformatics 20 (4): 1160-1166. doi: 10.1093/bib/bbx108
  • Keifer HH 1975. Eriophyoid studies C–10. United States Department of Agriculture, Agricultural Research Service, 10: 1-24.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution 35 (6): 1547-1549. doi:10.1093/molbev/msy096
  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23 (21): 2947-2948. doi: 10.1093/bioinformatics/btm404 Lewandowski M, Skoracka A, Szydło W, Kozak M, Druciarek T, Griffiths DA (2014). Genetic and morphological diversity of Trisetacus species (Eriophyoidea: Phytoptidae) associated with coniferous trees in Poland: phylogeny, barcoding, host and habitat specialization. Experimental and Applied Acarology 63 (4): 497- 520. doi:10.1007/s10493-014-9805-z
  • Li HS, Xue XF, Hong XY (2014). Homoplastic evolution and host association of Eriophyoidea (Acari, Prostigmata) conflict with the morphological-based taxonomic system. Molecular Phylogenetics and Evolution 78: 185-198. doi: 10.1016/j.ympev.2014.05.014
  • Lindquist EE (1996). External anatomy and systematics 1.1. 1. External anatomy and notation of structures. In World crop pests 6, 3-31, Elsevier.
  • Magalhães S, Forbes MR, Skoracka A, Osakabe M, Chevillon C, McCoy KD (2007). Host race formation in the Acari. Experimental and Applied Acarology 42 (4): 225-238. doi: 10.1007/s10493-007- 9091-0
  • Navajas M, Navia D (2010) DNA-based methods for eriophyoid mite studies: review, critical aspects, prospects and challenges. Experimental and Applied Acarology 51: 257-271. doi: 10.1007/978-90-481-9562-6_13
  • Navajas M, Fenton B (2000). The application of molecular markers in the study of diversity in acarology: a review. Experimental & applied acarology 24 (10-11): 751-774. doi: 10.1023/A:1006497906793
  • Skoracka A, Smith L, Oldfield G, Cristofaro M, Amrine JW (2009) Hostplant specificity and specialization in eriophyoid mites and their importance for the use of eriophyoid mites as biocontrol agents of weeds. In: Ueckermann E.A. (eds) Eriophyoid Mites: Progress and Prognoses. Springer, Dordrecht. doi: 10.1007/978-90-481-9562- 6_6
  • Skoracka A, Kuczyński L, de Mendonça RS, Dabert M, Szydło W et al. (2012). Cryptic species within the wheat curl mite Aceria tosichella (Keifer) (Acari: Eriophyoidea), revealed by mitochondrial, nuclear and morphometric data. Invertebrate Systematics 26 (4): 417-433.
  • Skoracka A, Magalhaes S, Rector BG, Kuczyński L (2015). Cryptic speciation in the Acari: a function of species lifestyles or our ability to separate species?. Experimental and Applied Acarology 67 (2): 165-182. doi: 10.1071/IS11037
  • Sonnenberg R, Nolte AW, Tautz D (2007). An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Frontiers in zoology 4 (1): 1-12. doi: 10.1186/1742-9994-4-6
  • Stenger DC, Hein GL, Tatineni S, French R (2016). Eriophyid mite vectors of plant viruses. Vector-Mediated Transmission of Plant Pathogens, ed. JK Brown (Saint Paul, MN: The American Phytopathological Society) 263-274.
  • Szydło W, Hein G, Denizhan E, Skoracka A (2015). Exceptionally high levels of genetic diversity in wheat curl mite (Acari: Eriophyidae) populations from Turkey. Journal of economic entomology 108 (4): 2030-2039. doi: 10.1093/jee/tov180
  • Van Leeuwen T, Witters J, Nauen R, Duso C, Tirry L (2010). The control of eriophyoid mites: state of the art and future challenges. Experimental and Applied Acarology 51 (1-3): 205- 224. doi: 10.1007/s10493-009-9312-9 Zhang ZQ (2017). Eriophyoidea and allies: where do they belong?. Systematic and Applied Acarology 22 (8): 1091-1095. doi: 10.11158/saa.22.8.1
  • Živković Z, Vidović B, Jojić V, Cvrković T, Petanović R (2017). Phenetic and phylogenetic relationships among Aceria spp.(Acari: Eriophyoidea) inhabiting species within the family Brassicaceae in Serbia. Experimental and Applied Acarology 71 (4): 329-343. doi: 10.1007/s10493-017-0128-8
Turkish Journal of Zoology-Cover
  • ISSN: 1300-0179
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Size of nest complexes, the size of anthills, and infrastructure development in 4 species of red wood ants (Formica rufa, F. polyctena, F. aquilonia, F. lugubris) (Hymenoptera; Formicidae)

Stanislav STUKALYUK, Alexey GILEV, Igor ANTONOV, Maksym NETSVETOV

Revision of common snipe, Gallinago gallinago in morphometric analysis and building the standard reference haematological values for further studies

Ahmad WAHEED, Kamran JAFAR, Muhammad Saleem KHAN, Muhammad WAJID, Shamoon ALI, Muhammad Waseem ASLAM, Shabbir AHMAD

Accumulation of chromium, cadmium and arsenic in white-tailed sea-eagle feathers (Aves: Haliaeetus albicilla) from the Danube Delta Biosphere Reserve and surrounding areas (Romania)

Dana SECELEANU, Marta PERAITA, Marian TUDOR, Janos BotondKISS, Lucian-EugenBOLBOACĂ, Cristina DESPINA, Vasile ALEXE, Adrian BURADA, Liliana TEODOROF, Mihai MARINOV, Alexandru-Cătălin DOROȘENCU, Dumitru MURARIU

Male-biased in-water population of loggerhead turtle (Caretta caretta) in Dalyan, Turkey as a possible important marine turtle area in the Mediterranean

Eyup BAŞKALE, Doğan SÖZBİLEN, Yakup KASKA

Analysis of amino acids, fatty acids and neurotoxins using gas chromatography-mass spectrometry in four scorpions species inhabiting New Valley Governorate, Egypt

Shimaa Mohamed SAID, Ahmad Hamed OBUID-ALLAH, Naser Abd-Elatif EL-SHIMY, Rouwaida Saadawy ALI, Mohamed Abd-Elmoez MAHBOB

The effect of streptomycin on survival, development, and some biochemical aspects of Drosophila melanogaster

Ender BÜYÜKGÜZEL, Kemal BÜYÜKGÜZEL, Volkan KELEŞ

Effect of breeds on heat-evoked gene responses in sheep adipose tissue

Dong ZHANG, Jing PAN, Huanmin ZHOU, Yu CAO

Molecular identification of eriophyoid mites in Thrace using the 28S and COI genes

Esengül ÖZDEMİR, Emre İNAK, Evsel DENİZHAN