Effects of carvacrol administration on motor function following spinal ischemia and reperfusion

Effects of carvacrol administration on motor function following spinal ischemia and reperfusion

The sensitivity of the medulla spinalis to ischemia and reperfusion has been shown in previous in vitro and in vivo studies. However, less is known about the effects of carvacrol administration following ischemia and reperfusion. It was hypothesized that carvacrol might have protective effects on motor neuron functionunder ischemia- and reperfusion-induced oxidative stress. A total of 24 adult Wistar rats were divided into three groups: group I (control group; n = 8), group II (spinal ischemia and reperfusion group; n = 8), and group III (spinal ischemia and reperfusion + carvacrol group; n = 8). Ischemia and reperfusion were performed by clamping the abdominal aorta for 45 min. Clamps were then removed and 100 mg/kg of carvacrol was administered to group III. In the control groups a vehicle solution was administered. Animals were then observed for motor deficit index 48 h following the ischemia. Prior to the termination of the experiment, blood serum was obtained through intracardiac puncture for analyses of total antioxidant status and total oxidative stress levels. The results did not show effects on total antioxidant status or total oxidative stress levels. However, the motor deficit index was significantly different between the carvacrol and spinal ischemia groups and between the control and spinal ischemia groups. Our study demonstrated improved motor function in spinal ischemia models following carvacrol administration. However, future studies are required to determine the mechanism which improves motor function under carvacrol administration.

___

  • Ahmad A, Khan A, Akhtar F, Yousuf S, Xess I et al. (2011). Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. European Journal of Clinical Microbiology & Infectious Diseases 30 (1): 41- 50. doi: 10.1007/s10096-010-1050-8
  • Badem S, Ugurlucan M, El H, Sahin M, Uysal M et al. (2014). Effects of ginkgo biloba extract on spinal cord ischemia–reperfusion injury in rats. Annals of Vascular Surgery 28 (5): 1296-1305. doi: 10.1016/j.avsg.2014.02.020
  • Bedreag OH, Rogobete AF, Sărăndan M, Cradigati A, Păpurică M et al. (2014). Oxidative stress and antioxidant therapy in traumatic spinal cord injuries. Romanian Journal of Anaesthesia and Intensive Care 21 (2): 123.
  • Basso D, Beattie M, Bresnahan J, Anderson D, Faden A et al. (1996). MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Journal of Neurotrauma 13 (7): 343-359. doi: 10.1089/neu.1996.13.343
  • Basso DM, Beattie MS, Bresnahan JC (1995). A sensitive and reliable locomotor rating scale for open field testing in rats. Journal of Neurotrauma 12 (1): 1-21. doi: 10.1089/neu.1995.12.1
  • Basso DM, Beattie MS, Bresnahan JC (1996). Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Experimental Neurology 139 (2): 244-256. doi: 10.1006/exnr.1996.0098
  • Ben Arfa A, Combes S, Preziosi‐Belloy L, Gontard N, Chalier P (2006). Antimicrobial activity of carvacrol related to its chemical structure. Letters in Applied Microbiology 43 (2): 149-154. doi: 10.1111/j.1472-765X.2006.01938.x
  • Can Baser KH (2008). Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Current Pharmaceutical Design 14 (29): 3106-3119. doi: 10.2174/138161208786404227
  • Canbek M, Uyanoglu M, Bayramoglu G, Senturk H, Erkasap N et al. (2008). Effects of carvacrol on defects of ischemia-reperfusion in the rat liver. Phytomedicine 15 (6-7): 447-452. doi: 10.1016/j. phymed.2007.11.022
  • Cemil B, Gokce EC, Kahveci R, Gokce A, Aksoy N et al. (2016). Aged garlic extract attenuates neuronal injury in a rat model of spinal cord ischemia/reperfusion injury. Journal of Medicinal Food 19 (6): 601-606. doi: 10.1089/jmf.2016.0018
  • Crimi E, Taccone FS, Infante T, Scolletta S, Crudele V et al. (2012). Effects of intracellular acidosis on endothelial function: an overview. Journal of Critical Care 27 (2): 108-118. doi: 10.1016/j. jcrc.2011.06.001
  • Dambolena JS, Zygadlo JA, Rubinstein HR (2011). Antifumonisin activity of natural phenolic compounds: a structure–property–activity relationship study. International Journal of Food Microbiology 145 (1): 140-146. doi: 10.1016/j.ijfoodmicro.2010.12.001
  • Enomoto S, Asano R, Iwahori Y, Narui T, Okada Y et al. (2001). Hematological studies on black cumin oil from the seeds of Nigella sativa L. Biological and Pharmaceutical Bulletin 24 (3): 307-310. doi: 10.1248/bpb.24.307
  • Erel O (2004). A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical Biochemistry 37 (2): 112-119. doi: 10.1016/j. clinbiochem.2003.10.014
  • Erkut B, Onk OA (2015). Effect of N-acetylcysteine and allopurinol combination to protect spinal cord ischemia/reperfusion injury induced by aortic cross-clamping in rat model. Journal of Cardiothoracic Surgery 10 (1): 95. doi: 10.1186/s13019-015- 0284-z
  • Fenaroli G (1975). Fenaroli’s handbook of flavor ingredients. Oxfordshire, UK: Taylor & Francis.
  • Fu J, Sun H, Zhang Y, Xu W, Wang C et al. (2018). Neuroprotective effects of luteolin against spinal cord ischemia–reperfusion injury by attenuation of oxidative stress, inflammation, and apoptosis. Journal of Medicinal Food 21 (1): 13-20. doi: 10.1089/jmf.2017.4021
  • Gokce EC, Kahveci R, Gokce A, Sargon MF, Kisa U et al. (2016). Curcumin attenuates inflammation, oxidative stress, and ultrastructural damage induced by spinal cord ischemia–reperfusion injury in rats. Journal of Stroke and Cerebrovascular Diseases 25 (5): 1196-1207. doi: 10.1016/j. jstrokecerebrovasdis.2016.01.008
  • Gökce EC, Kahveci R, Gökce A, Cemil B, Aksoy N et al. (2016). Neuroprotective effects of thymoquinone against spinal cord ischemia-reperfusion injury by attenuation of inflammation, oxidative stress, and apoptosis. Journal of Neurosurgery: Spine 24 (6): 949-959. doi: 10.3171/2015.10.SPINE15612
  • Guven M, Sehitoglu MH, Yuksel Y, Tokmak M, Aras AB et al. (2015). The neuroprotective effect of coumaric acid on spinal cord ischemia/reperfusion injury in rats. Inflammation 38 (5): 1986-1995. doi: 10.1007/s10753-015-0195-0
  • Hwang JY, Sohn HM, Kim JH, Park S, Park JW et al. (2017). Reproducible motor deficit following aortic occlusion in a rat model of spinal cord ischemia. Journal of Visualized Experiments (125): 55814. doi: 10.3791/55814
  • Jukic M, Politeo O, Maksimovic M, Milos M, Milos M (2007). In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytotherapy Research 21 (3): 259-261. doi: 10.1002/ptr.2063
  • Kaufmann D, Dogra AK, Wink M (2011). Myrtenal inhibits acetylcholinesterase, a known Alzheimer target. Journal of Pharmacy and Pharmacology 63 (10): 1368-1371. doi: 10.1111/j.2042-7158.2011.01344.x
  • Kayacan Y, Çetinkaya A, Yazar H, Makaracı Y (2019). Oxidative stress response to different exercise intensity with an automated assay: thiol/disulphide homeostasis. Archives of Physiology and Biochemistry: 1-5. doi: 10.1080/13813455.2019.1651868
  • Korkmaz K, Gedik HS, Budak AB, Yener AU, Kaya E et al. (2015). Effect of montelukast on spinal cord ischemia-reperfusion injury. Turkish Neurosurgery 25 (5): 757-765. doi: 10.5137/1019-5149.jtn.11499-14.2
  • Liang Y, Yang Q, Yu X, Jiang D (2011). Additive effect of tetramethylpyrazine and deferoxamine in the treatment of spinal cord injury caused by aortic cross-clamping in rats. Spinal Cord 49 (2): 302. doi: 10.1038/sc.2010.113
  • Orhan I, Kartal M, Kan Y, Şener B (2008). Activity of essential oils and individual components against acetyland butyrylcholinesterase. Zeitschrift fuer Naturforschung C 63 (7- 8): 547-553. doi: 10.1515/znc-2008-7-813
  • Ozturk H, Cetinkaya A, Duzcu SE, Tekce BK, Ozturk H (2018). Carvacrol attenuates histopathogic and functional impairments induced by bilateral renal ischemia/reperfusion in rats. Biomedicine& Pharmacotherapy 98: 656-661. doi: 10.1016/j. biopha.2017.12.060
  • Ryu J-H, Park J-W, Hwang J-Y, Park S-J, Kim J-H et al. (2018). The attenuation of neurological injury from the use of simvastatin after spinal cord ischemia-reperfusion injury in rats. BMC Anesthesiology 18 (1): 31. doi: 10.1186/s12871-018- 0496-6
  • Shaafi S, Afrooz MR, Hajipour B, Dadashi A, Hosseinian MM et al. (2011). Anti-oxidative effect of lipoic acid in spinal cord ischemia/reperfusion. Medical Principles and Practice 20 (1): 19-22. doi: 10.1159/000319772
  • Suo L, Kang K, Wang X, Cao Y, Zhao H et al. (2014). Carvacrol alleviates ischemia reperfusion injury by regulating the PI3KAkt pathway in rats. PLoS One 9 (8): e104043.
  • Tarlov IM. (1972). Acute spinal cord compression paralysis. Journal of Neurosurgery 36 (1): 10-20. doi: 10.1371/journal. pone.0104043
  • Tokmak M, Yuksel Y, Sehitoglu MH, Guven M, Akman T et al (2015). The neuroprotective effect of syringic acid on spinal cord ischemia/reperfusion injury in rats. Inflammation 38 (5): 1969-1978. doi: 10.1007/s10753-015-0177-2
  • Usul H, Arslan E, Cansever T, Cobanoglu U, Baykal S (2008). Effects of clotrimazole on experimental spinal cord ischemia/ reperfusion injury in rats. Spine 33 (26): 2863-2867. doi: 10.1097/BRS.0b013e3181906e6d
  • Yeni E, Gulum M, Selek S, Erel O, Unal D et al. (2005). Comparison of oxidative/antioxidative status of penile corpus cavernosum blood and peripheral venous blood. International Journal of Impotence Research 17 (1): 19. doi: 10.1038/sj.ijir.3901262
  • Yu H, Zhang Z-L, Chen J, Pei A, Hua F et al. (2012). Carvacrol, a food-additive, provides neuroprotection on focal cerebral ischemia/reperfusion injury in mice. PLoS One 7 (3): e33584. doi: 10.1371/journal.pone.0033584