Investigation on the human coronaviruses origin (bats and pangolins): a review

Investigation on the human coronaviruses origin (bats and pangolins): a review

A coronavirus related to SARS-CoV-2 has been isolated from Malayan pangolins illegally imported into Guangdong Province. It is not the precursor of SARS-CoV-2, but a comparison of viral genome sequences provides further evidence that the virus currently infecting humans. Bats and pangolins have been suggested as the natural reservoirs of a large variety of viruses. Some researchers have given attention to other species as the origin of coronaviruses and none have referred to bats and pangolins as the two emerging coronaviruses origin, which have caused unexpected human disease outbreaks recently. Severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV), are suggested to be originated from bats and pangolins. Numerous species of bats and pangolins in China have been observed to harbor genetically diverse SARS-like coronaviruses. Some strains are highly similar to SARS-CoV even in the spike protein and are able to use the same receptor as SARS-CoV for cell entry. Meanwhile, different coronaviruses phylogenetically related to MERS-CoV have been observed in the bats and pangolins species, some might be classified as similar to coronavirus species as MERS-CoV. Coronaviruses genetically related to human coronavirus 229E and NL63 have been found in bats and pangolins, respectively. However, intermediate hosts are suggested to play an important role in the transmission and emergence of these coronaviruses from bats and pangolins to humans. This study further documented that bats and pangolins origin of human coronaviruses are meaningful to predict and prevent a future outbreak of the deadly pandemic.

___

  • Alagaili AN, Briese T, Mishra N, Kapoor V, Sameroff SC et al. (2014). Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. Micro Biology 5 (2): e00884- 14. doi: 10.1128/mBio.00884-14
  • Albarrak AM, Stephens GM, Hewson R, Memish ZA (2012). Recovery from severe novel coronavirus infection. Saudi Medical Journal 33 (12): 1265-1269.
  • Annan A, Owusu M, Marfo KS, Larbi R, Sarpong FN et al. (2013). High prevalence of common respiratory viruses and no evidence of Middle East respiratory syndrome coronavirus in Hajj pilgrims returning to Ghana. Tropical Medicine and International Health 20 (6): 11-76. doi: 10.1111/tmi.12482
  • Annan A, Baldwin HJ, Corman VM, Klose SM, Owusu et al. (2013). Human beta coronavirus 2c EMC/2012-related viruses in bats. Ghana and Europe Emergence Infectious Disease 19 (3): 456-459. doi: 10.3201/eid1903.121503
  • Anthony SJ, Ojeda-Flores R, Rico-Chavez O, Navarrete-Macias I, Zambrana- Torrelio CM et al. (2013). Coronaviruses in bats from Mexico. Journal of General Virology 94 (5): 1028-1038. doi: 10.1099/vir.0.049759-0
  • Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, Al-Saeed MS et al. (2014). Evidence for camel-to-human transmission of MERS Coronavirus. New English Journal Medical 3 (70): 2499-2505. doi: 10.1056/NEJMoa1401505
  • Azhar EI, Hashem AM, El-Kafrawy SA, Sohrab SS, Aburizaiza AS et al. (2014). Detection of the Middle East respiratory syndrome coronavirus genome in an air sample originating from a camel barn owned by an infected patient. Micro Biology 5 (4): e01450- 14. doi: 10.1128/mBio.01450-14
  • Balboni A, Palladini A, Bogliani G, Battilani M (2011). Detection of a virus related to beta coronaviruses in Italian greater horseshoe bats. Epidemiology Infection 139 (2): 216-219. doi: 10.1017/ S0950268810001147
  • Barlan A, Zhao J, Sarkar MK, Li K, McCray PB et al. (2014). Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection. Journal of Virology 88 (9): 4953-4961. doi: 10.1128/JVI.00161-14
  • Bermingham A, Chand MA, Brown CS, Aarons E, Tong C et al. (2012). Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East. Euro Surveillance 17 (40): 202-29
  • Briese T, Mishra N, Jain K, Zalmout IS, Jabado OJ et al. (2014). Middle East respiratory syndrome coronavirus quasispecies that includes homologues of human isolates revealed through wholegenome analysis and virus cultured from dromedary camels in Saudi Arabia. Micro Biology 5 (3): e01146-14. doi: 10.1128/ mBio.01146-14
  • Centers for Disease and Prevention Control (2003). Prevalence of IgG antibody to SARSassociated coronavirus in animal traders–Guangdong Province, China. MMWR Mortal Weekly Representation 52 (41): 986-987.
  • Chan JF, Chan KH, Choi GK, To KK, Tse H et al. (2013). Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation. Journal of Infectious Disease 207 (11): 1743-1752. doi: 10.1093/infdis/jit123
  • Chen Y, Rajashankar KR, Yang Y, Agnihothram SS, Liu C et al. (2013). Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus. Journal of Virology 87 (19): 10777-10783. doi: 10.1128/JVI.01756-13
  • Chinese SARS Molecular Epidemiology Consortium (2004). Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303 (5664): 1666-1669. doi: 10.1126/ science.1092002
  • Chu DK, Poon LL, Gomaa MM, Shehata MM, Perera RA et al. (2014). MERS coronaviruses in dromedary camels. Egypt Emergence Infection Disease 20 (6): 1049-1053. doi: 10.3201/eid2006.140299
  • Cohen J (2020). Mining coronavirus genomes for clues to the outbreak’s origins. Science. doi: 10.1126/science.abb1256 Coleman CM, Matthews KL, Goicochea L, Frieman MB (2014). Wildtype and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus. Journal of General Virology 95 (2): 408-412. doi: 10.1099/vir.0.060640-0
  • Corman VM, Jores J, Meyer B, Younan M, Liljander A et al. (2014). Antibodies against MERS coronavirus in dromedary camels, Kenya. Emergence Infectious Disease 20 (8): 1319-1322. doi: 10.3201/eid2008.140596
  • Corman VM, Ithete NL, Richards LR, Schoeman MC, Preiser W et al. (2014). Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat. Journal of Virology 88 (19): 11297-11303. doi: 10.1128/JVI.01498-14
  • Corman VM, Baldwin HJ, Fumie Tateno A, Melim Zerbinati R, Annan A et al. (2015). Evidence for an ancestral association of human coronavirus 229E with bats. Journal of Virology 89 (23): 11858- 11870 doi: 10.1128/JVI.01755-15
  • Coutard B, ValleC, LamballerieX, Canard B, Seidah NG et al. (2020). The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Research 17 (6): 104-742.
  • Cui J, Eden JS, Holmes EC, Wang LF (2013). Adaptive evolution of bat dipeptidyl peptidase 4 (dpp4): Implications for the origin and emergence of Middle East respiratory syndrome coronavirus. Virology Journal 10 (2): 101-304. doi: 10.1186/1743-422X-10-304
  • De Benedictis P, Marciano S, Scaravelli D, Priori P, Zecchin B et al. (2014). Alpha and lineage C betaCoV infections in Italian bats. Virus Genes 48 (2): 366-371. doi: 10.1007/s11262-013-1008-x
  • De Groot R, Baker S, Baric R, Enjuanes L, Gorbalenya A et al. (2012). Family Coronaviridae. In: King A, Adams M, Cartens E, Lefkowitz E (editors). Virus Taxonomy; Ninth Report of the International Committee on Taxonomy of Viruses. Waltham, MA, USA: Elsevier Academic Press, pp. 806-828.
  • De Groot RJ, Baker SC, Baric RS, Brown CS, Drosten Cet al. (2013). Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. Journal of Virology 87 (14): 7790-7792. doi: 10.1128/JVI.01244-13
  • De Wit E, Prescott J, Baseler L, Bushmaker T, Thomas Tet al. (2013). The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters. PLoS One 8 (7): e69127. doi: 10.1371/journal.pone.0069127
  • Ding Y, He L, Zhang Q, Huang Z, Chen X et al. (2004). Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. Journal of Pathology 203 (2): 622-630. doi: 10.1002/path.1560
  • Donaldson EF, Haskew AN, Gates JE, Huynh J, Moore CJ et al. (2010). Metagenomic analysis of the viromes of three North American bat species: viral diversity among different bat species that share a common habitat. Journal of Virology 84 (24): 13004-13018. doi 10.1128/JVI.01255 10
  • Drexler JF, Corman VM, Drosten C (2014). Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Research (101): 45-56. doi: 10.1016/j. antiviral.2013.10.013
  • Drexler JF, Gloza-Rausch F, Glende J, Corman VM, Muth D et al. (2010). Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. Journal of Virology 84 (21): 11336- 49. doi: 10.1128/JVI.00650-10
  • Eckerle I, Corman VM, Muller MA, Lenk M, Ulrich RG et al. (2014). Replicative capacity of MERS coronavirus in livestock cell lines. Emergence Infect Disinfection 20 (2): 276-279. doi: 10.3201/ eid2002.131182
  • Falcon A, Vazquez-Moron S, Casas I, Aznar C, Ruiz G et al. (2011). Detection of alpha and betacoronaviruses in multiple Iberian bat species. Archives of Virology 156 (10): 1883-1890. doi: 10.1007/ s00705-011-1057-1
  • Fielding BC (2011). Human coronavirus NL63: a clinically important virus? Future Microbiology 6 (2): 153-159. doi: 10.2217/ fmb.10.166
  • Fouchier RA, Hartwig NG, Bestebroer TM, Niemeyer B, De Jong JC et al. (2004). A previously undescribed coronavirus associated with respiratory disease in humans. Proceeding of the National Academy of Sciences United States of America 101 (16): 6212- 6216. doi: 10.1073/pnas.0400762101
  • Gallagher TM, Buchmeier MJ (2001). Coronavirus spike proteins in viral entry and pathogenesis. Virology 279 (2): 371-374. doi: 10.1006/ viro.2000.0757
  • Ge XY, Li JL, Yang XL, Chmura AA, Zhu G et al. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503 (7477): 535-538. doi: 10.1038/nature12711
  • Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX et al. (2003). Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302 (5643): 276-278. doi: 10.1126/science. 1087139
  • Haagmans BL, Al-Dhahiry SH, Reusken CB, Raj VS, Galiano M et al. (2014). Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infectious Disease 14 (2): 140-145. doi: 10.1016/S1473-3099(13)70690-X
  • Haagmans BL, Van den Brand JM, Provacia LB, Raj VS, Stittelaar KJ et al. Asymptomatic Middle East respiratory syndrome coronavirus infection in rabbits. Journal of Virology 89 (11): 6131-6135. doi: 10.1128/JVI.00661-15
  • Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G et al. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. The first step in understanding SARS pathogenesis. Journal of Pathology 203 (2): 631-637. doi: 10.1002/path.1570
  • Halpin K, Young PL, Field HE, Mackenzie JS (2000). Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. Journal General of Virology 81 (8): 1927-1932.
  • Health Protection Agency (2013). United Kingdom Novel Coronavirus Investigation team: evidence of person-to-person transmission within a family cluster of novel coronavirus infections. Euro Surveillance (18): 204-227.
  • Heinrich S, Wittman TA, Ross JV, Shepherd CR, Challender et al. (2017). The global trafficking of pangolins: a comprehensive summary of seizures and trafficking routes. TRAFFIC (1): 1-32.
  • Hemida MG, Perera RA, Wang P, Alhammadi MA, Siu LY et al. (2013). Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia. Euro Surveillance 18 (50): 20-65.
  • Huynh J, Li S, Yount B, Smith A, Sturges L et al. (2012). Evidence supporting a zoonotic origin of human coronavirus strain NL63. Journal of Virology 86 (23): 12816-12825. doi: 10.1128/JVI.00906- 12
  • Ithete NL, Stoffberg S, Corman VM, Cottontail VM, Richards LR et al. (2013). Close relative of human Middle East respiratory syndrome coronavirus in the bat. South Africa Emergence Infection Disease 19 (10): 1697-1699. doi: 10.3201/eid1910.130946
  • Kan B, Wang M, Jing H, Xu H, Jiang X et al. (2005). Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. Journal of Virology 79 (18): 11892-11900. doi:10.1128/JVI.79.18.11892-11900.2005
  • King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (2012). Virus taxonomy: Classification and nomenclature of viruses. Ninth Report of the International Committee on Taxonomy of Viruses. Waltham, MA, USA: Elsevier, pp. 193-210.
  • Korean Society of Infectious D, Korean Society for Healthcareassociated Infection C, Korean Society for Healthcare-associated Infection C, Prevention (2015). An unexpected outbreak of middle east respiratory syndrome coronavirus infection in the Republic of Korea. Infection and Chemotherapy 47 (2): 120-122. doi: 10.3947/ic.2015.47.2.120
  • Lam TTY, Jia N, Wu-chun Cao WC, Shum MHH, Jiang JF et al. (2020). Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583: 282-285.
  • Lau SK, Li KS, Tsang AK, Lam CS, Ahmed S et al. (2013). Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus. Journal of Virology 87 (15): 8638-8650. doi: 10.1128/JVI.01055-13
  • Lau SK, Feng Y, Chen H, Luk HK, Yang WH et al. (2015). Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination. Journal of Virology 89 (20): 10532- 10547. doi: 10.1128/JVI.01048-15
  • Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW et al. (2005). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proceeding of National Academy of Sciences United States of America 102 (39): 14040-14045. doi: 10.1073/pnas.0506735102
  • Lelli D, Papetti A, Sabelli C, Rosti E, Moreno A et al. (2013). Detection of coronaviruses in bats of various species in Italy. Viruses 5 (11): 2679-2689. doi: 10.3390/v5112679
  • Li W, Shi Z, Yu M, Ren W, Smith C et al. (2005). Bats are natural reservoirs of SARS-like coronaviruses. Science 310 (5748): 676- 679. doi: 10.1126/science.1118391
  • Li W, Zhang C, Sui J, Kuhn JH, Moore MJ et al. (2005). Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO Journal 24 (8): 1634-1643. doi: 10.1038/sj.emboj.7600640
  • Li F, Li W, Farzan M, Harrison SC (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309 (5742): 1864-1868. doi: 10.1126/science.1116480
  • Li W, Moore MJ, Vasilieva N, Sui J, Wong SK et al. (2003). Angiotensinconverting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426 (6965): 450-454. doi: 10.1038/ nature02145
  • Lu G, Hu Y, Wang Q, Qi J, Gao F et al. (2013). Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 500 (7461): 227-231. doi: 10.1038/nature12328
  • Lu R, Zhao X, Li J, Niu P, Yang B et al. (2020). Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395 (10224): 565-574. doi: 10.1016/S0140-6736
  • Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A et al. (2003). The genome sequence of the SARS-associated coronavirus. Science 300 (5624): 1399-1404. doi: 10.1126/science.1085953
  • Masters PS (2006). The molecular biology of coronaviruses. Advance in Virus Research (66): 193-292. doi: 10.1016/S0065-3527(06)66005-3
  • Memish ZA, Mishra N, Olival KJ, Fagbo SF, Kapoor V et al. (2013). Middle East respiratory syndrome coronavirus in bats. Saudi Arabia Emergence Infection Disease 19 (11): 1819-1823. doi: 10.3201/eid1911.131172
  • Memish ZA, Cotten M, Meyer B, Watson SJ, Alsahafi AJ et al. (2014). Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia. Emergence Infection Disease 20 (6): 1012-1015. doi: 10.3201/eid2006.140402
  • Meyer B, Muller MA, Corman VM, Reusken CB, Ritz D et al. (2014). Antibodies against MERS coronavirus in dromedary camels. Emergence Infectious Disease 20 (4): 552-559. doi: 10.3201/ eid2004.131746
  • Muller MA, Corman VM, Jores J, Meyer B, Younan M et al. (2014). MERS coronavirus neutralizing antibodies in camels, Eastern Africa. Emergence Infection Disease 20 (12): 2093-2095. doi: 10.3201/eid2012.141026
  • Nowotny N, Kolodziejek J (2014). Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels. Euro Surveillance 19 (16): 207-281.
  • Oostra M, De Haan CA, Rottier PJ (2007). The 29-nucleotide deletion present in humans but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8. Journal of Virology 81 (24): 13876- 13888. doi: 10.1128/JVI.01631-07
  • Pfefferle S, Oppong S, Drexler JF, Gloza-Rausch F, Ipsen A et al. (2009). Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats. Ghana Emergence Infection Disease 15 (9): 1377-1384. doi: 10.3201/eid1509.090224
  • Poon LL, Chu DK, Chan KH, Wong OK, Ellis TM et al. (2005). Identification of a novel coronavirus in bats. Journal of Virology 79 (4): 2001-2009. doi: 10.1128/JVI.79.4.2001-2009.2005
  • Quan PL, Firth C, Street C, Henriquez JA, Petrosov A et al. (2010). Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. Micro Biology 1 (4): 1-9. doi: 10.1128/mBio.00208-10
  • Qu XX, Hao P, Song XJ, Jiang SM, Liu YX et al. (2005). Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy. Journal of Biological Chemistry 280 (33): 29588-29595. doi: 10.1074/jbc.M500662200
  • Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA et al. (2013). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495 (7440): 251-254. doi: 10.1038/nature12005
  • Raj VS, Farag EA, Reusken CB, Lamers MM, Pas SD et al. (2014). Isolation of MERS coronavirus from a dromedary camel. Emergence Infection Disease 20 (8): 1339-1342. doi: 10.3201/ eid2008.140663
  • Reed SE (1984). The behavior of recent isolates of human respiratory coronavirus in vitro and in volunteers: Evidence of heterogeneity among 229E-related strains. Journal Medical Virology 13 (2): 179-192.
  • Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R et al. (2003). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300 (5624): 1394-1399. doi: 10.1126/science.1085952
  • Rihtaric D, Hostnik P, Steyer A, Grom J, Toplak I (2010). Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus Hipposideros) in Slovenia. Archives of Virology 155 (4): 507-514. doi: 10.1007/s00705-010-0612-5
  • Ren W, Qu X, Li W, Han Z, Yu M et al. (2008). Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS like coronavirus of bat origin. Journal of Virology 82 (4): 1899-1907. doi: 10.1128/JVI.01085-07
  • Reusken CB, Lina PH, Pielaat A, De Vries A, Dam-Deisz C et al. (2010). Circulation of group 2 coronaviruses in a bat species common to urban areas in Western Europe. Vector Borne Zoonotic Disease 10 (8): 785-791. doi: 10.1089/vbz.2009.0173
  • Reusken CB, Haagmans BL, Muller MA, Gutierrez C, Godeke GJ et al. (2013). Middle East respiratory syndrome coronavirus neutralizing serum antibodies in dromedary camels: a comparative serological study. Lancet Infection Disease 13 (10): 859-866. doi: 10.1016/S1473-3099(13)70164-6
  • Reusken CB, Ababneh M, Raj VS, Meyer B, Eljarah A et al. (2013). The Middle East Respiratory Syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan. Euro Surveillance 18 (50): 206-262.
  • Reusken CB, Messadi L, Feyisa A, Ularamu H, Godeke GJ et al. (2014). Geographic distribution of MERS coronavirus among dromedary camels. Africa Emergence Infectious Disease 20 (8): 1370-1374. doi: 10.3201/eid2008.140590
  • Shi Z (2013). Emerging infectious diseases associated with bat viruses. China Life Science 56 (8): 678-682. doi: 10.1007/s11427-013- 4517-x
  • Smith I, Wang LF (2013). An important source of emerging viruses capable of infecting humans. Current Opinion of Virology 3 (1): 84-91. doi: 10.1016/j.coviro.2012.11.006
  • Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J et al. (2003). Unique and conserved features of genome and proteome of SARS coronavirus, an early split-off from the coronavirus group 2 lineage. Journal of Molecular Biology 331 (5): 991-1004.
  • Song HD, Tu CC, Zhang GW, Wang SY, Zheng K et al. (2005). Crosshost evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proceeding National Academy of Science United States of America 102 (7): 2430-2435. doi: 10.1073/pnas.0409608102
  • Tang XC, Zhang JX, Zhang SY, Wang P, Fan XH et al. (2006). Prevalence and genetic diversity of coronaviruses in bats from China. Journal of Virology 80 (15): 7481-7490. doi: 10.1128/JVI.00697-06
  • Tong S, Conrardy C, Ruone S, Kuzmin IV, Guo X et al. (2009). Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emergence Infectious Disease 15 (3): 482-485. doi: 10.3201/ eid1503.081013
  • Van Boheemen S, De Graaf M, Lauber C, Bestebroer TM, Raj VS et al. (2012). Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. Molecular Biology 3 (6): e00473-12. doi: 10. 1128/ mBio.00473-12
  • Van Doremalen N, Miazgowicz KL, Milne-Price S, Bushmaker T, Robertson S et al. (2014). Host species restriction of Middle East respiratory syndrome coronavirus through its receptor dipeptidyl peptidase 4. Journal of Virology 88 (16): 9220-9232. doi: 10.1128/ JVI.00676-14
  • Wacharapluesadee S, Sintunawa C, Kaewpom T, Khongnomnan K, Olival KJ et al. (2013). Group C betacoronavirus in bat guano fertilizer. Thailand Emergence Infectious Disease 19 (8): 1349- 1351. doi: 10.3201/eid1908.130119
  • Wan Y, Shang J, Graham R, Baric RS, Li F et al. (2020). Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology (94): e00127-20.
  • Wang M, Yan M, Xu H, Liang W, Kan B et al. (2005). SARS-CoV infection in a restaurant from palm civet. Emergence Infection Disease (11): 1860-1865. doi: 10.3201/eid1112.041293
  • Wang W, Lin XD, Liao Y, Guan XQ, Guo WP et al. (2017). Discovery of a highly divergent coronavirus in the Asian house shrew from China illuminates the origin of the alphacoronaviruses. Journal of Virology 91 (17): e00764-17.
  • Wang N, Shi X, Jiang L, Zhang S, Wang D et al. (2013). Structure of MERSCoV spike receptor-binding domain complexed with human receptor DPP4. Cell Research 23 (8): 986-993. doi: 10.1038/cr.2013.92
  • World Health Organization (2015). Summary and risk assessment of current situation in Republic of Korea and China (1). Geneva, Switzerland: World Health Organization, pp. 1-4.
  • World Health Organization. Coronavirus disease 2019 (COVID-19) (2020). Situation Report 101 (1). Geneva, Switzerland: World Health Organization, pp. 1-38.
  • Wong SK, Li W, Moore MJ, Choe H, Farzan M et al. (2004). A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. Journal of Biological Chemistry 279 (5): 3197-3201. doi: 10.1074/jbc.C300520200
  • Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK et al. (2012). Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. Journal of Virology 86 (7): 3995-4008. doi: 10.1128/JVI.06540-11
  • Woo PC, Lau SK, Li KS, Tsang AK, Yuen KY et al. (2012). Genetic relatedness of the novel human group C betacoronavirus to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5. Emergence Microbes Infection 1 (11): e35. doi: 10.1038/emi.2012.45
  • Woo PC, Lau SK, Li KS, Poon RW, Wong BH et al. (2006). Molecular diversity of coronaviruses in bats. Virology 351 (1): 180-187. doi: 10.1016/j.virol.2006.02.041
  • Woo PC, Wang M, Lau SK, Xu H, Poon RW et al. (2007). Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. Journal of Virology 81 (4): 1574-1585. doi: 10.1128/JVI.02182-06
  • Wu D, Tu C, Xin C, Xuan H, Meng Q et al. (2005). Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates. Journal of Virology 79 (4): 2620-2625. doi: 10.1128/JVI.79.4.2620-2625.2005
  • Wu F, Zhao S, Yu B, Chen YM, Wang W et al. (2020). A new coronavirus associated with human respiratory disease in China. Nature 579: 265-269.
  • Xu RH, He JF, Evans MR, Peng GW, Field HE et al. (2004). Epidemiologic clues to SARS origin in China. Emergence Infection Disease 10 (6): 1030-7. doi: 10.3201/eid1006.030852
  • Yang L, Wu Z, Ren X, Yang F, Zhang J et al. (2014). MERS-related betacoronavirus in Vespertilio superans bats, China. Emergence Infectious Disease 20 (7): 1260-1262. doi: 10.3201/eid2007.140318
  • Yang Y, Du L, Liu C, Wang L, Ma C et al. (2014). Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-tohuman transmission of MERS coronavirus. Proceeding National Academy of Sciences 111 (34): 12516-12521. doi: 10.1073/ pnas.1405889111
  • Yob JM, Field H, Rashdi AM, Morrissy C, Van der Heide B et al. (2001). Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emergence Infectious Disease 7 (3): 439-441. doi: 10.3201/eid0703.010312
  • Yuan J, Hon CC, Li Y, Wang D, Xu G et al. (2010). Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans. Journal of General Virology 91 (4): 1058-1062. doi: 10.1099/ vir.0.016378-0
  • Yusof MF, Eltahir YM, Serhan WS, Hashem FM, Elsayed EA et al. (2015). Prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Abu Dhabi Emirate. Virus Genes 50 (3): 509-513. doi: 10.1007/s11262-015-1174-0
  • Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA et al. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New English Journal Medicine 367 (19): 1814-1820. doi: 10.1056/NEJMoa1211721
  • Zaki AM (2012). Novel coronavirus—Saudi Arabia: human isolate. International Society for Infectious Disease 98 (2): E143-E144.
  • Zhong NS, Zheng BJ, Li YM, Poon, Xie ZH et al. (2003). Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong. Lancet 362 (9393): 1353-1358.
  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L et al. (2020). A pneumonia outbreak is associated with a new coronavirus of probable bat origin. Nature 579: 270-273.