Cloning and characterization of ubiquitin ribosome fusion gene RpS27a, a deltamethrin-resistance-associated gene from diamondback moth (Plutella xylostella L.)

The ubiquitin ribosome fusion gene RpS27a's coding sequence was cloned from diamondback moth, Plutella xylostella (L.). An open reading frame of 468 bp was found to encode a putative 155 amino acid precursor protein, which shares over 90% similarity with other insects' RpS27a protein. Real-time quantitative PCR was carried out to determine the relative expression level in the fourth instar larvae of deltamethrin-resistant and deltamethrin-susceptible strains. The results showed that the expression of RpS27a was significantly higher in the deltamethrin-resistant strain than in the deltamethrin-susceptible strain. There are reports indicating that upregulation expression of some ribosomal proteins confers some insecticide resistance. For the first time, we have predicted that the increased expression of the RpS27a gene may have some association with pesticide resistance in Plutella xylostella.

Cloning and characterization of ubiquitin ribosome fusion gene RpS27a, a deltamethrin-resistance-associated gene from diamondback moth (Plutella xylostella L.)

The ubiquitin ribosome fusion gene RpS27a's coding sequence was cloned from diamondback moth, Plutella xylostella (L.). An open reading frame of 468 bp was found to encode a putative 155 amino acid precursor protein, which shares over 90% similarity with other insects' RpS27a protein. Real-time quantitative PCR was carried out to determine the relative expression level in the fourth instar larvae of deltamethrin-resistant and deltamethrin-susceptible strains. The results showed that the expression of RpS27a was significantly higher in the deltamethrin-resistant strain than in the deltamethrin-susceptible strain. There are reports indicating that upregulation expression of some ribosomal proteins confers some insecticide resistance. For the first time, we have predicted that the increased expression of the RpS27a gene may have some association with pesticide resistance in Plutella xylostella.

___

  • Amerik, A.Y. and Hochstrasser, M. 2004. Mechanism and function of deubiquitinating enzymes. BBA-Mol. Cell Res 1695: 189–207.
  • Baker, R.T. and Board, P.G. 1991. The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes. Nucleic Acids Res 19: 1035–1040.
  • Binet, M.N., Weil, J.H. and Tessier, L.H. 1991. Structure and expression of sunflower ubiquitin genes. Plant Mol. Biol 17: 395–407.
  • Boiteux, S. and Radicella, J.P. 1999. Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress. Biochimie 81: 59–67.
  • Busvine, J.R. 1951. Mechanism of resistance to insecticide in houseflies. Nature 168: 193–195.
  • Cheng, L., Wang, S., Chen, Z. and Li Z. 2005. cDNA representational difference analysis of the deltamethrin-resistant and -susceptible populations in diamondback moth (Plutella xylostella L.). J Appl Entomol 129: 515–520.
  • Cheng, L., Xu, J., Xue, J., Wang, Y. and Li, Z. 2009. Downregulation of ubiquitin gene expression in the deltamethrin-resistant diamondback moth (Plutella xylostella). J Appl Entomol 133: 533–538.
  • Finley, D., Bartel, B. and Varshavsky, A. 1989. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338: 394–401.
  • Hama, H., Kono, Y. and Sato, Y. 1987. Decreased sensitivity of central nerve to fenvalerate in the pyrethroid-resistant diamondback moth, Plutella xylostella Linne (Lepidoptera: Yponomeutidae). Appl Entomol Zool 22: 176–180.
  • Han, X., Lee, M., Yu, G., Lee, Z., Bae, J., Bae, Y., Kang, S. and Kim, D. 20 Altered dynamics of ubiquitin hybrid proteins during tumor cell apoptosis. Cell Death Dis 3: e255. He, J., Sun, H., Zhang, D., Sun, Y., Ma, L., Chen, L., Liu, Z., Xiong, C., Yan, G. and Zhu, C. 2009. Cloning and characterization of 60S ribosomal protein L22 (RPL22) from Culex pipiens pallens. Comp Biochem Phys B 153: 216–222.
  • Hemingway, J., Coleman, M., Paton, M., McCarroll, L., Vaughan, A. and DeSilva, D. 2000. Aldehyde oxidase is coamplified with the world’s most common Culex mosquito insecticide resistanceassociated esterases. Insect Mol Biol 9: 93–99.
  • Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G.. and Jentsch, S. 200 RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135–141. Horn, H. and Vousden, K. 2008. Cooperation between the ribosomal proteins L5 and L11 in the p53 pathway. Oncogene 27: 5774– 57
  • Ismail, M.F. and Mohamed, H.M. 2012. Deltamethrin-induced genotoxicity and testicular injury in rats: comparison with biopesticide. Food Chem Toxicol 50: 3421–3425.
  • Jeanmougin, F. 1998. Multiple sequence alignment with Clustal X. Trends Biochem Sci 23: 403–405.
  • Jin, A., Itahana, K., O’Keefe, K. and Zhang, Y. 2004. Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 24: 7669–7680.
  • Kim, S.H., Um, J.H., Kim, D.W., Kwon, B.H., Chung, B.S. and Kang, C.D. 2000. Potentiation of chemosensitivity in multidrugresistant human leukemia CEM cells by inhibition of DNAdependent protein kinase using wortmannin. Leukemia Res 24: 917–925.
  • Kondoh, N., Shuda, M., Tanaka, K., Wakatsuki, T., Hada, A. and Yamamoto, M. 2001. Enhanced expression of S8, L12, L23a, L27 and L30 ribosomal protein mRNAs in human hepatocellular carcinoma. Anticancer Res 21: 2429–2433.
  • Lalitha, S. 2000. Primer Premier 5. Biotech Software & Internet Report 1: 270–272.
  • Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔ CT method. Methods 25: 402–408.
  • Love, K.R., Catic, A., Schlieker, C. and Ploegh, H.L. 2007. Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nat Chem Biol 3: 697–705.
  • Magnani, M., Crinelli, R., Bianchi, M. and Antonelli, A. 2000. The ubiquitin-dependent proteolytic system and other potential targets for the modulation of nuclear factor-kB (NF-kB). Cur Drug Targets 1: 387–399.
  • Mezquita, J., Pau, M. and Mezquita, C. 1997. Characterization and expression of two chicken cDNAs encoding ubiquitin fused to ribosomal proteins of 52 and 80 amino acids. Gene 195: 313–319.
  • Moulton, J.K., Pepper, D.A. and Dennehy, T.J. 2000. Beet armyworm
  • (Spodoptera exigua) resistance to spinosad. Pest Manag Sci 56: 842–848. Noppun, V., Saito, T. and Miyata, T. 1989. Cuticular penetration of
  • S-fenvalerate in fenvalerate-resistant and susceptible strains of the diamondback moth, Plutella xylostella (L.). Pestic Biochem Phys 33: 83–87. O’Mahony, P.J. and Oliver, M.J. 1999. The involvement of ubiquitin in vegetative desiccation tolerance. Plant Mol Biol 41: 657–667.
  • Ozkaynak, E., Finley, D., Solomon, M. and Varshavsky, A. 1987. The yeast ubiquitin genes: a family of natural gene fusions. EMBO J 6: 1429–1439.
  • Paton, M.G., Karunaratne, S., Giakoumaki, E., Roberts, N. and Hemingway, J. 2000. Quantitative analysis of gene amplification in insecticide-resistant Culex mosquitoes. Biochem J 346: 17–
  • Pedra, J., McIntyre, L., Scharf, M. and Pittendrigh, B.R. 2004. Genome-wide transcription profile of field- and laboratoryselected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila. Proc Natl Acad Sci USA 101: 7034–7039.
  • Redman, K.L. and Rechsteiner, M. 1989. Identification of the long ubiquitin extension as ribosomal protein S27a. Nature 338: 438–440.
  • Sandigursky, M., Yacoub, A., Kelley, M.R., Deutsch, W.A. and Franklin, W.A. 1997. The Drosophila ribosomal protein S3 contains a DNA deoxyribophosphodiesterase (dRpase) activity. J Biol Chem 272: 17480–17484.
  • Sayeed, I., Parvez, S., Pandey, S., Bin-Hafeez, B., Haque, R. and Raisuddin, S. 2003. Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicol Environ Saf 56: 295–301.
  • Schuler, T.H., Martinez-Torres, D., Thompson, A.J., Denholm, I., Devonshire, A.L., Duce I.R. and Williamson, M.S. 19 Toxicological, electrophysiological, and molecular characterisation of knockdown resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L.). Pestic Biochem Physiol 59: 169–182. Shen, B., Dong, H.Q., Tian, H.S., Ma, L., Li, X.L., Wu, G.L. and Zhu, C.L. 2003. Cytochrome P450 genes expressed in the deltamethrin-susceptible and -resistant strains of Culex pipiens pallens. Pestic Biochem Physiol 75: 19–26.
  • Singh, S., Vrishni, S., Singh, B.K., Rahman, I. and Kakkar, P. 2010.
  • Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases. Free Radical Res 44: 1267–1288.
  • Smith, M.L., Ford, J.M., Hollander, M.C., Bortnick, R.A., Amundson, S.A., Seo, Y.R., Deng, C.X., Hanawalt, P.C. and Fornace, J.A.J. 2000. p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 20: 3705–3714.
  • Sun, H., Sun, L., He, J., Shen, B., Yu, J., Chen, C., Yang, M., Sun, Y., Zhang, D., Ma, L. and Zhu, C. 2011. Cloning and characterization of ribosomal protein S29, a deltamethrin resistance associated gene from Culex pipiens pallens. Parasitol Res 109: 1689–1697.
  • Soderlund, D.M., Clark, J.M., Sheets, L.P., Mullin, L.S., Piccirillo, V.J., Sargent, D., Stevens, J.T. and Weiner, M.L. 2002. Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171: 3–59.
  • Soderlund, D. and Knipple, D. 2003. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol 33: 563–577.
  • Sun, X.X., DeVine, T., Challagundla, K.B. and Dai, M.S. 2011. Interplay between ribosomal protein S27a and MDM2 in p53 activation in response to ribosomal stress. J Biol Chem 286: 22730–22741.
  • Takagi, M., Absalon, M.J., McLure, K.G. and Kastan, M.B. 2005. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123: 49–63.
  • Talekar, N. and Shelton, A. 1993. Biology, ecology, and management of the diamondback moth. Annu Rev Entomol 38: 275–301.
  • Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.
  • Tan, W., Sun, L., Zhang, D., Sun, J., Qian, J., Hu, X., Wang W., Sun Y., Ma, L. and Zhu, C. 2007. Cloning and overexpression of ribosomal protein L39 gene from deltamethrin-resistant Culex pipiens pallens. Exp Parasitol 115: 369–378.
  • Vontas, J.G., Small, G.J. and Hemingway, J. 2001. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J 357: 65–72.
  • Wang, H., Zhao, L.N., Li, K.Z., Ling, R., Li, X.J. and Wang, L. 2006.
  • Overexpression of ribosomal protein L15 is associated with cell proliferation in gastric cancer. BMC Cancer 6: 91. Widawsky, D., Rozelle, S., Jin, S. and Huang, J. 1998. Pesticide productivity, host-plant resistance, and productivity in China. Agr Econ 19: 203–217.
  • Yacoub, A., Kelley, M.R. and Deutsch, W.A. 1996. Drosophila ribosomal protein PO contains apurinic/apyrimidinic endonuclease activity. Nucleic Acids Res 24: 4298–4303.
  • Yang, Q., Sun, L., Zhang, D., Qian, J., Sun, Y., Ma, L., Sun, J., Hu, X., Tan, W. and Wang, W. 2008. Partial characterization of deltamethrin metabolism catalyzed by chymotrypsin. Toxicol In Vitro 22: 1528–1533.
  • Yonath, A. 2005. Antibiotics targeting ribosomes: resistance, selectivity, synergism and cellular regulation. Annu Rev Biochem 74: 649–679.