The orientation of earthworms is influenced by magnetic fields

Earth has a natural magnetic field that many animals use for orientation and navigation. With the development of technology, these natural systems have been exposed to high levels of man-made electromagnetism from the heavy usage of electric devices. This study aims to understand the possible effects of artificial magnetic fields on the behavioral responses of the earthworm, which is used in this study as a model organism in laboratory conditions. The 3 experimental groups, each composed of 20 earthworms, were exposed to 190–520 µT magnetic fields using a 1.5 V current for 1-h durations in a wire-wrapped vivarium. The experimental and control groups were kept in similar conditions. A camera recorded the positions of the earthworms every 5 min. The angles, in terms of the mean vector of each earthworm’s position beginning in the center of the vivarium, were documented using the Adobe Photoshop CS6 program. The mean vectors and angles of different experimental designs and controls were compared using circular statistics. The orientations of the earthworms in the control 261.4° ± 101.6° and experimental 251.2° ± 94.1° groups were statistically different P

___

  • Aladjadjiyan A, Ylieva T (2003). Influence of stationary magnetic field on the early stages of the development of tobacco seeds (Nicotiana tabacum L.). Journal of Central European Agriculture 4: 131-138.
  • Banks AN, Srygley RB (2003). Orientation by magnetic field in leaf-cutter ants, Atta colombica (Hymenoptera: Formicidae). Ethology 109(10): 835-846. doi: 10.1046/j.0179- 1613.2003.00927.x
  • Bastardie F, Capowiez Y, De Dreuzy JR, Cluzeau D (2003). X-ray tomographic and hydraulic characterization of burrowing by three earthworm species in repacked soil cores. Applied Soil Ecology 24(1): 3-16. doi: 10.1016/S0929-1393(03)00071-4
  • Bennett MF, Huguenin J (1969). Geomagnetic effects on a circadian difference in reaction times in earthworms. Zeitschrift Für Vergleichende Physiologie 63(4): 440-445. doi: 10.1007/ BF00339683
  • Bochert R, Zettler ML (2006). Effect of electromagnetic fields on marine organisms geomagnetic field detection in marine organisms. In: Köller J, Köppel J, Peters W (editors.). Offshore Wind Energy: Research on Environmental Impacts. New York: Springer, pp. 223-234. doi: 10.1007/978-3-540-34677-7_14
  • Budán F, Kovács N, Engelmann P, Horváth I, Veres DS et al. (2014). Longitudinal in vivo MR imaging of live earthworms. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 321(9): 479-489. doi: 10.1002/jez.1880
  • Cannavacciuolo M, Bellido A, Cluzeau D, Gascuel C, Trehen P (1998). A geostatistical approach to the study of earthworm distribution in grassland. Applied Soil Ecology 9(1-3): 345- 349. doi: 10.1016/S0929-1393(98)00087-0
  • Decaëns T, Rossi JP (2008). Spatio-temporal structure of earthworm community and soil heterogeneity in a tropical pasture. Ecography 24(6): 671-682. doi: 10.1111/j.1600-0587.2001. tb00529.x
  • Ernst G, Felten D, Vohland M, Emmerling C (2009). Impact of ecologically different earthworm species on soil water characteristics. European Journal of Soil Biology 45(3): 207- 213. doi: 10.1016/j.ejsobi.2009.01.001
  • Giller KE, Beare MH, LavelleP, Izac AMN, Swift MJ (1997). Agricultural intensification, soil biodiversity and agroecosystem function. Applied Soil Ecology 6: 3-16.
  • Kirschvink JL (1982). Birds, bees and magnetism. Trends in Neurosciences 5: 160-167. doi: 10.1016/0166-2236(82)90090- X
  • Kirschvink JL, Kirschvink AK (1991). Is geomagnetic sensitivity real ? Replication of the Walker–Bitterman magnetic conditioning experiment in honey bees. American Zoologist 31(1): 169-185.
  • Lavelle P (1988). Earthworm activities and the soil system. Biology and Fertility of Soils 6(3): 237-251. doi: 10.1007/BF00260820 Lavelle P, Martin A (1992). Small-scale and large-scale effects of endogeneic earthworms on soil organic matter dynamics in soil and the humid tropics. Soil Biology and Biochemistry 24(12): 1491-1498.
  • Lee YJ, Hyung K, Yoo JS, Jang Y, Kim S et al. (2016). Effects of exposure to extremely low-frequency electromagnetic fields on the differentiation of Th17 T cells and regulatory T cells.
  • General Physiology and Biophysics 35: 487-495. doi: 10.4149/ gpb Levins R (1968). Evolution in Changing Environments: Some Theoretical Explorations. Princeton, NJ, USA: Princeton University Press.
  • Lohmann KJ (1985). Geomagnetic field detection by the western Atlantic spiny lobster, Panulirus argus. Marine Behaviour and Physiology 12: 1-17.
  • Lohmann KJ (1991). Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta). The Journal of Experimental Biology 155: 37-49.
  • Lohmann KJ (1993). Magnetic compass orientation. Nature 362: 703. doi: 10.1038/362703a0
  • Love MS, Nishimoto MM, Clark S, Bull AS (2015). Identical response of caged rock crabs (genera Metacarcinus and Cancer) to energized and unenergized undersea power cables in southern California, USA. Bulletin of the Southern California Academy of Sciences 114(1): 33-41. doi: 10.3160/0038-3872-114.1.33 Ma J (1984). Creatures and Bionics. Tianjin: Science and Technology Press.
  • Mardia K, Jupp P (2000). Directional Statistics. London: John Wiley & Sons Ltd. Martin S, Lavelle P (1992). A simulation model of vertical movements of an earthworm population (Millsonia anomala Omodeo, Megascolecidae) in an African savanna (Lamto, Ivory Coast).
  • Soil Biology and Biochemistry 24(12): 1419-1424. doi: 10.1016/0038-0717(92)90127-J
  • Odacı E, Özyilmaz C (2015). Exposure to a 900 MHz electromagnetic field for 1 hour a day over 30 days does change the histopathology and biochemistry of the rat testis. International Journal of Radiation Biology 91(7): 547-554. doi: 10.3109/09553002.2015.1031850
  • Palm J, van Schaik, NLMB, Schröder B (2013). Modelling distribution patterns of anecic, epigeic and endogeic earthworms at catchment-scale in agro-ecosystems. Pedobiologia 56(1): 23- 31. doi: 10.1016/j.pedobi.2012.08.007
  • Quillin K (1999). Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm Lumbricus terrestris. The Journal of Experimental Biology 202(6): 661-674.
  • Quinn T, Groot C (1983). Orientation of chum salmon (Oncorhynchus keta) after internal and external magnetic field alteration. Canadian Journal of Fisheries and Aquatic Sciences 40(10): 1598-1606. doi: 10.1139/f83-185
  • Shensa L, Barrows W (1932). The subepidermal nerve plexus and galvanotropism of the earthworm (Lumbricus terrestris Linn.). The Ohio Journal of Science 32(6): 507-512.
  • Shipitalo MJ, Protz R, Tomlin AD (1988). Effect of diet on the feeding and casting activity of Lumbricus terrestris and Lumbricus rubellus in laboratory culture. Soil Biology and Biochemistry 20(2): 233-237. doi: 10.1016/0038-0717(88)90042-9
  • Simko M, Kriehuber R, Weiss DG, Luben RA (1998). Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines. Bioelectromagnetics 19(2): 85-91. doi: 10.1002/(SICI)1521- 186X(1998)19
  • Skauli K, Reitan J, Walther B (2000). Hatching in zebrafish (Danio rerio) embryos exposed to a 50 Hz magnetic field. Bioelectromagnetics 21(5): 407-410.
  • Sun J, Sun B, Wei J, Ren R, Wu L, Cong Q (1991). Measurement and determination of earthworm skin potential related to moving. Journal of Jilin University of Technology 21(4): 18-22.
  • Sun LY, Hsieh DK, Yu TC, Chiu HT, Lu SF et al. (2009). Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Bioelectromagnetics 30(4): 251-260. doi: 10.1002/ bem.20472.
  • Valckx J, Pennings A, Leroy T, Berckmans D, Govers G et al. (2010). Automated observation and analysis of earthworm surface behaviour under experimental habitat quality and availability conditions. Pedobiologia 53(4): 259-263. doi: 10.1016/j. pedobi.2009.12.005
  • Vian A, Davies E, Gendraud M, Bonnet P (2016). Plant responses to high frequency electromagnetic fields. BioMed Research International 2016: 1-13. doi: 10.1155/2016/1830262
  • Vidal-Gadea A, Ward K, Beron C, Ghorashian N, Gokce S et al. (2015). Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans. Elife 4. E07493. doi: 10.7554/eLife.07493
  • Weiler M, Naef F (2003). An experimental tracer study of the role of macropores in infiltration in grassland soils. Hydrological Processes 17(2): 477-493. doi: 10.1002/hyp.1136
  • Wetzel A, Uchman A, Bromley RG (2016). Underground miners come out to the surface – trails of earthworms. Ichnos: An International Journal of Plant and Animal 23(1-2): 99-107. doi: 10.1080/10420940.2015.1130707
  • Whalen J, Costa C (2003). Linking spatio-temporal dynamics of earthworm populations to nutrient cycling in temperate agricultural and forest ecosystems. Pedobiologia 47(5-6): 801- 806. doi: 10.1016/S0031-4056(04)70271-1
  • Wiltschko W, Wiltschko R (1996). Magnetic orientation in birds. The Journal of Experimental Biology 199(1): 29-38. doi: 10.1098/ rspb.2003.2476
  • Yan Y, Ren L, Li J (2007). The electro-osmotically driven flow near an earthworm’s body surface and the inspired bionic design in engineering. International Journal of Design & Nature and Ecodynamics 1(2): 135-145. doi: 10.2495/D
  • Zar JH (1976). Two-sample and multisample testing of circular data. Behavior Research Methods & Instrumentation 8(3): 329-330. doi: 10.3758/bf03201734
  • Zu YQ, Yan YY (2006). Numerical simulation of electroosmotic flow near earthworm surface. Journal of Bionic Engineering 3(4): 179-186. doi: 10.1016/S1672-6529(07)60001-8
Turkish Journal of Zoology-Cover
  • ISSN: 1300-0179
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK