Nonpharmacological treatment options for Alzheimer’s disease: from animal testing to clinical studies

Nonpharmacological treatment options for Alzheimer’s disease: from animal testing to clinical studies

Despite extensive pharmacological approaches, there is no curative therapy for Alzheimer’s disease (AD) or other types ofdementias. While current pharmacological options alleviate some symptoms of AD, they can lead to various adverse effects. Hence,nonpharmacological treatment options for AD are often considered with the assumption that they are safe, effective, and economic inmanaging patients. Furthermore, studies on animal models have suggested that environmental exposures like diet, music, or rewardrelatedactions can stimulate neuronal regeneration and differentiation without using any pharmacological factors. The aim of thisreview is to provide a summary of nonpharmacological treatment options for the management of cognitive, emotional, and behavioralsymptoms of AD. In addition, this review provides an overview of the challenging and encouraging experiences and recent studies andproblems in cognitive training related to animal models. Nonpharmacological studies of AD are discussed in this literature review interms of animal models, physical activity, brain stimulation, and the role of social communication.

___

  • Albarracin, SL, Stab B, Casas Z, Sutachan JJ, Samudio I et al. (2012). Effects of natural antioxidants in neurodegenerative disease. Nutritional Neuroscience 15 (1): 1-9. doi: 10.1179/1476830511Y.0000000028
  • Ambrée O, Leimer U, Herring A, Görtz N, Sachser N et al. (2006). Reduction of amyloid angiopathy and Aβ plaque burden after enriched housing in TgCRND8 mice. American Journal of Pathology 169 (2): 544-552. doi: 10.2353/ajpath.2006.051107
  • Annweiler C (2014). Vitamine D et maladie d’Alzheimer : d’une curieuse idée à une possibilité de traitement. Biologie Aujourd’hui 208 (1): 89-95 (in French). doi: 10.1051/ jbio/2014005
  • Azad N, Rasoolijazi H, Joghataie MT, Soleimani S (2011). Neuroprotective effects of carnosic acid in an experimental model of Alzheimer’s disease in rats. Cell Journal 13 (1): 39-44.
  • Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H et al. (2015). Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimer’s and Dementia 11 (6): 718-726. doi: 10.1016/j.jalz.2015.05.016
  • Beauquis J, Pavía P, Pomilio C, Vinuesa A, Podlutskaya N et al. (2013). Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer’s disease. Experimental Neurology 239: 28-37. doi: 10.1016/j.expneurol.2012.09.009
  • Braidy N, Behzad S, Habtemariam S, Ahmed T, Daglia M et al. (2017a). Neuroprotective effects of citrus fruit-derived flavonoids, nobiletin and tangeretin in Alzheimer’s and Parkinson’s disease. CNS & Neurological Disorders - Drug Targets 16 (4): 387-397. doi: 10.2174/18715273166661703281 13309
  • Braidy N, Jugder BE, Poljak A, Jayasena T, Mansour H et al. (2016). Resveratrol as a potential therapeutic candidate for the treatment and management of Alzheimer’s disease. Current Topics in Medicinal Chemistry 16 (17): 1951-1960. doi: 10.217 4/1568026616666160204121431
  • Braidy N, Jugder BE, Poljak A, Jayasena T, Nabavi SM et al. (2017b). Molecular targets of tannic acid in Alzheimer’s disease. Current Alzheimer Research 14 (8): 861-869. doi: 10.2174/1567205014 666170206163158
  • Cacciatore I, Marinelli L, Fornasari E (2016). Novel NSAID-derived drugs for the potential treatment of Alzheimer’s disease. International Journal of Molecular Sciences 17: 1035. doi: 10.3390/ijms17071035
  • Cass SP (2017). Alzheimer’s disease and exercise. Current Sports Medicine Reports 16 (1): 19-22. doi: 10.1249/ JSR.0000000000000332
  • Chakraborty S, Bandyopadhyay J, Chakraborty S, Basu S (2016). Multi-target screening mines hesperidin as a multi-potent inhibitor: implication in Alzheimer’s disease therapeutics. European Journal of Medicinal Chemistry 121: 810-822. doi: 10.1016/j.ejmech.2016.03.057
  • Chen WW, Zhang X, Huang WJ (2016). Role of physical exercise in Alzheimer’s disease. Biomedical Reports 4 (4): 403-407. doi: 10.3892/br.2016.607
  • Cornejo A, Aguilar Sandoval F, Caballero L, Machuca L, Muñoz P et al. (2017). Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau protein linked to Alzheimer’s disease. Journal of Enzyme Inhibition and Medicinal Chemistry 32 (1): 945-953. doi: 10.1080/14756366.2017.1347783
  • Cotel MC, Jawhar S, Christensen DZ, Bayer TA, Wirths O (2012). Environmental enrichment fails to rescue working memory deficits, neuron loss, and neurogenesis in APP/PS1KI mice. Neurobiology of Aging 33 (1): 96-107. doi: 10.1016/j. neurobiolaging.2010.02.012
  • Cotelli M, Manenti R, Petesi M, Brambilla M, Rosini S et al. (2014). Anodal tDCS during face-name associations memory training in Alzheimer’s patients. Frontiers in Aging Neuroscience 6: 38. doi: 10.3389/fnagi.2014.00038
  • Ebrahimi K, Majdi A, Baghaiee B, Hosseini SH, Sadigh-Eteghad S (2017). Physical activity and beta-amyloid pathology in Alzheimer’s disease: a sound mind in a sound body. EXCLI Journal 16: 959-972. doi: 10.17179/excli2017-475
  • El Haj M, Jardri R, Larøi F, Antoine P (2016). Hallucinations, loneliness, and social isolation in Alzheimer’s disease. Cognitive Neuropsychiatry 21 (1): 1-13. doi: 10.1080/13546805.2015.1121139
  • Eliasova I, Anderkova L, Marecek R, Rektorova I (2014). Noninvasive brain stimulation of the right inferior frontal gyrus may improve attention in early Alzheimer’s disease: a pilot study. Journal of the Neurological Sciences 346: 318-322. doi: 10.1016/j.jns.2014.08.036
  • Essa MM, Vijayan RK, Castellano-Gonzalez G, Memon MA, Braidy N et al. (2012). Neuroprotective effect of natural products against Alzheimer’s disease. Neurochemical Research 37: 1829- 1842. doi: 10.1007/s11064-012-0799-9
  • Farzi MA, Sadigh-Eteghad S, Ebrahimi K, Talebi M (2019). Exercise improves recognition memory and acetylcholinesterase activity in the beta amyloid-induced rat model of Alzheimer’s disease. Annals of Neurosciences 25: 121-125. doi: 10.1159/000488580
  • Feng Y, Wang X (2012). Antioxidant therapies for Alzheimer’s disease. Oxidative Medicine and Cellular Longevity 2012: 472932. doi: 10.1155/2012/472932
  • Ghofrani S, Joghataei MT, Mohseni S, Baluchnejadmojarad T, Bagheri M et al. (2015). Naringenin improves learning and memory in an Alzheimer’s disease rat model: Insights into the underlying mechanisms. European Journal of Pharmacology 764: 195-201. doi: 10.1016/j.ejphar.2015.07.001
  • Ghosh S, Basak P, Dutta S, Chowdhury S, Sil PC (2017). New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food and Chemical Toxicology 103: 41-55. doi: 10.1016/j.fct.2017.02.028
  • Habtemariam S (2016). Protective effects of caffeic acid and the Alzheimer’s brain: an update. Mini-Reviews in Medicinal Chemistry 17 (8): 667-674. doi: 10.2174/13895575166661611 30100947
  • Herring A, Ambrée O, Tomm M, Habermann H, Sachser N et al. (2009). Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology. Experimental Neurology 216: 184-192. doi: 10.1016/j. expneurol.2008.11.027
  • Hsu WY, Ku Y, Zanto TP, Gazzaley A (2015). Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: a systematic review and meta-analysis. Neurobiology of Aging 36 (8): 2348-2359. doi: 10.1016/j. neurobiolaging.2015.04.016
  • Hu N, Yu JT, Tan L, Wang YL, Sun L et al. (2013). Nutrition and the risk of Alzheimer’s disease. BioMed Research International 2013: 524820. doi: 10.1155/2013/524820
  • Jedrziewski MK, Ewbank DC, Wang H, Trojanowski JQ (2014). The impact of exercise, cognitive activities, and socialization on cognitive function. American Journal of Alzheimer’s Disease & Other Dementias 29 (4): 372-378. doi: 10.1177/1533317513518646
  • Jensen CS, Bahl JM, Østergaard LB, Høgh P, Wermuth L et al. (2019a). Exercise as a potential modulator of inflammation in patients with Alzheimer’s disease measured in cerebrospinal fluid and plasma. Experimental Gerontology 121: 91-98. doi: 10.1016/j.exger.2019.04.003
  • Jensen CS, Simonsen AH, Siersm V, Beyer N, Frederiksen KS et al. (2019b). Patients with Alzheimer’s disease who carry the APOE ε4 allele benefit more from physical exercise. Alzheimer’s and Dementia: Translational Research and Clinical Interventions 5: 99-106. doi: 10.1016/j.trci.2019.02.007
  • Khedr EM, El Gamal NF, El-Fetoh NA, Khalifa H, Ahmed EM et al. (2014). A double-blind randomized clinical trial on the efficacy of cortical direct current stimulation for the treatment of Alzheimer’s disease. Frontiers in Aging Neuroscience 6: 275. doi: 10.3389/fnagi.2014.00275
  • King JB, Jones KG, Goldberg E, Rollins M, MacNamee K et al. (2019). Increased functional connectivity after listening to favored music in adults with Alzheimer dementia. Journal of Prevention of Alzheimer’s Disease 6 (1): 56-62. doi: 10.14283/ jpad.2018.19
  • Liu J, Liu Z, Zhang Y, Yin F (2015). A novel antagonistic role of natural compound icariin on neurotoxicity of amyloid β peptide. Indian Journal of Medical Research 142 (2): 190-195. doi: 10.4103/0971-5916.164254
  • Liu Q, Chen Y, Shen C, Xiao Y, Wang Y et al. (2017). Chicoric acid supplementation prevents systemic inflammation-induced memory impairment and amyloidogenesis via inhibition of NF-κB. FASEB Journal 31 (4): 1494-1507. doi: 10.1096/ fj.201601071R
  • Liu X, Zhou J, Abid MDN, Yan H, Huang H et al. (2014). Berberine attenuates axonal transport impairment and axonopathy induced by calyculin a in N2a cells. PLoS One 9 (4): e93974. doi: 10.1371/journal.pone.0093974
  • Liu Y, Pukala TL, Musgrave IF, Williams DM, Dehle FC et al. (2013). Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation. Bioorganic and Medicinal Chemistry Letters 23 (23): 6336-6340. doi: 10.1016/j. bmcl.2013.09.071
  • Marinelli L, Fornasari E, Di Stefano A, Turkez H, Arslan ME et al. (2017). (R)-α-Lipoyl-Gly-l-Pro-l-Glu dimethyl ester as dual acting agent for the treatment of Alzheimer’s disease. Neuropeptides 66: 52-58. doi: 10.1016/j.npep.2017.09.001
  • Martorell M, Forman K, Castro N, Capó X, Tejada S et al. (2016). Potential therapeutic effects of oleuropein aglycone in Alzheimer’s disease. Current Pharmaceutical Biotechnology 17: 994-1001. doi: 10.2174/1389201017666160725120656
  • Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G (2016). Therapies for prevention and treatment of Alzheimer’s disease. BioMed Research International 2016: 1-17. doi: 10.1155/2016/2589276
  • Moneim A (2015). Oxidant/antioxidant imbalance and the risk of Alzheimer’s disease. Current Alzheimer Research 12 (4): 335- 349. doi: 10.2174/1567205012666150325182702
  • Morris MC, Tangney CC, Wang Y, Sacks FM, Barnes LL et al. (2015a). MIND diet slows cognitive decline with aging. Alzheimer’s and Dementia 11 (9): 1015-1122. doi: 10.1016/j.jalz.2015.04.011
  • Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA et al. (2015b). MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimer’s and Dementia 11 (9): 1007- 1014. doi: 10.1016/j.jalz.2014.11.009
  • Nakajima A, Aoyama Y, Shin EJ, Nam Y, Kim HC et al. (2015). Nobiletin, a citrus flavonoid, improves cognitive impairment and reduces soluble Aβ levels in a triple transgenic mouse model of Alzheimer’s disease (3XTg-AD). Behavioural Brain Research 289: 69-77. doi: 10.1016/j.bbr.2015.04.028
  • Nigam SM, Xu S, Kritikou JS, Marosi K, Brodin L et al. (2017). Exercise and BDNF reduce Aβ production by enhancing α-secretase processing of APP. Journal of Neurochemistry 142: 286-296. doi: 10.1111/jnc.14034
  • Nithianantharajah J, Hannan AJ (2006). Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nature Reviews Neuroscience 7: 697-709. doi: 10.1038/ nrn1970
  • Olajide OJ, Yawson EO, Gbadamosi IT, Arogundade TT, Lambe E et al. (2017). Ascorbic acid ameliorates behavioural deficits and neuropathological alterations in rat model of Alzheimer’s disease. Environmental Toxicology and Pharmacology 50: 200- 211. doi: 10.1016/j.etap.2017.02.010
  • Pagoni A, Marinelli L, Di Stefano A (2020) Novel anti-Alzheimer phenol-lipoyl hybrids: synthesis, physico-chemical characterization, and biological evaluation. European Journal of Medicinal Chemistry 186: 111880. doi: 10.1016/j. ejmech.2019.111880
  • Park YJ, Ko J, Jeon S, Kwon YH (2016). Protective effect of genistein against neuronal degeneration in ApoE-/- mice fed a high-fat diet. Nutrients 8 (11): 692. doi: 10.3390/nu8110692
  • Peng X, Xing P, Li X, Qian Y, Song F et al. (2016). Towards personalized intervention for Alzheimer’s disease. Genomics, Proteomics & Bioinformatics 14 (5): 289-297. doi: 10.1016/j. gpb.2016.01.006
  • Persson T, Popescu BO, Cedazo-Minguez A (2014). Oxidative stress in Alzheimer’s disease: Why did antioxidant therapy fail? Oxidative Medicine and Cellular Longevity 2014: 427318. doi: 10.1155/2014/427318
  • Rezai-Zadeh K (2005). Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. Journal of Neuroscience 25 (38): 8807-8814. doi: 10.1523/ JNEUROSCI.1521-05.2005
  • Riello R, Frisoni GB (2001). Music therapy in Alzheimer’s disease: is an evidence-based approach possible? Recenti Progressi in Medicina 92 (5): 317-321 (in Italian with an abstract in English).
  • Rietjens IM, Boersma MG, Haan L, Spenkelink B, Awad HM et al. (2002). The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environmental Toxicology and Pharmacology 11: 321-333. doi: 10.1016/S1382-6689(02)00003-0
  • Rossi Dare L, Garcia A, Alves N, Ventura Dias D, de Souza MA et al. (2019). Physical and cognitive training are able to prevent recognition memory deficits related to amyloid beta neurotoxicity. Behavioural Brain Research 365: 190-197. doi: 10.1016/j.bbr.2019.03.007
  • Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E et al. (2015). The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 93: 134-145. doi: 10.1016/j. neuropharm.2015.01.027
  • Sachdeva AK, Chopra K (2015). Lycopene abrogates Aβ (1–42)-mediated neuroinflammatory cascade in an experimental model of Alzheimer’s disease. Journal of Nutritional Biochemistry 26 (7): 736-744. doi: 10.1016/j. jnutbio.2015.01.012
  • Shal B, Ding W, Ali H, Kim YS, Khan S (2018). Antineuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Frontiers in Pharmacology 9: 548. doi: 10.3389/fphar.2018.00548
  • Shinohara M, Yamada M (2015). Vitamin E and Alzheimer’s disease. Brain and Nerve 67 (12): 1509-1513 (in Japanese with an abstract in English).
  • Silva GJJ, Bye A, el Azzouzi H, Wisløff U (2017). MicroRNAs as important regulators of exercise adaptation. Progress in Cardiovascular Diseases 60 (1): 130-151. doi: 10.1016/j. pcad.2017.06.003
  • Soni M, Orrell M, Bandelow S, Steptoe A, Rafnsson S et al. (2019). Physical activity pre- and post-dementia: English Longitudinal Study of Ageing. Aging and Mental Health 23 (1): 15-21. doi: 10.1080/13607863.2017.1390731
  • Stephen R, Hongisto K, Solomon A, Lönnroos E (2017). Physical activity and Alzheimer’s disease: a systematic review. Journals of Gerontology Series A, Biological Sciences and Medical Sciences 72 (6): 733-739. doi: 10.1093/gerona/glw251
  • Talarek S, Listos J, Barreca D, Tellone E, Sureda A et al. (2017). Neuroprotective effects of honokiol: from chemistry to medicine. BioFactors 43 (6): 760-769. doi: 10.1002/biof.1385
  • Terada A, Yoshida M, Seko Y, Kobayashi T, Yoshida K et al. (1999). Active oxygen species generation and cellular damage by additives of parenteral preparations: selenium and sulfhydryl compounds. Nutrition 15: 651-655. doi: 10.1016/S0899- 9007(99)00119-7
  • Türkez H, Arslan ME (2018). Neuroprotective effects of leucomicine sesquiterpene on differentiated SH-SY5Y neuroblastoma cell line. Neuroendocrinology 107: 35-36.
  • Van Dijk A, van Weert JCM, Dröes RM (2012). Does theatre improve the quality of life of people with dementia? International Psychogeriatrics 12: 99-116. doi: 10.1017/S1041610211001992
  • Van Dijk AM, van Weert JCM, Dröes RM (2012). Theater als contactmethode in de psychogeriatrische zorg: effecten op gedrag, stemming en kwaliteit van leven van mensen met dementie. Tijdschrift Voor Gerontologie En Geriatrie 43 (6): 283-295. doi: 10.1007/s12439-012-0042-9
  • Verret L, Krezymon A, Halley H, Trouche S, Zerwas M et al. (2013). Transient enriched housing before amyloidosis onset sustains cognitive improvement in Tg2576 mice. Neurobiology of Aging 34: 211-225. doi: 10.1016/j.neurobiolaging.2012.05.013
  • Wolf SA, Kronenberg G, Lehmann K, Blankenship A, Overall R et al. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)- 23 model of Alzheimer’s disease. Biological Psychiatry 60 (12): 1314-1323. doi: 10.1016/j.biopsych.2006.04.004
  • Yu SY, Zhang M, Luo J, Zhang L, Shao Y et al. (2013). Curcumin ameliorates memory deficits via neuronal nitric oxide synthase in aged mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry 45: 47-53. doi: 10.1016/j. pnpbp.2013.05.001
  • Yu XL, Li YN, Zhang H, Su YJ, Zhou WW et al. (2015). Rutin inhibits amylin-induced neurocytotoxicity and oxidative stress. Food & Function 6 (10): 3296-3306. doi: 10.1039/C5FO00500K
  • Zhang R, Zhang J, Fang L, Li X, Zhao Y et al. (2014). Neuroprotective effects of sulforaphane on cholinergic neurons in mice with Alzheimer’s disease-like lesions. International Journal of Molecular Sciences 15 (8): 14396-14410. doi: 10.3390/ ijms150814396
Turkish Journal of Zoology-Cover
  • ISSN: 1300-0179
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK