Levels of milk glycosaminoglycans in Holstein cows with clinical and subclinical mastitis

Levels of milk glycosaminoglycans in Holstein cows with clinical and subclinical mastitis

Mastitis is an inflammation of the mammary gland whose diagnosis is based on clinical criteria and the determination of inflammatory markers. The disease is mainly caused by bacteria causing intra-mammary infections. The etiological agent/s are detected by milk culture or by molecular biology approaches. However, these methodologies are unpractical for on-farm diagnosis, where rapid decisions must be made when infected animals are detected. For this reason, the levels of glycosaminoglycans (GAGs) in milk were evaluated as a tool for the diagnosis of mastitis. GAGs levels were determined by the dimethylmethylene blue assay (DMMB) method in milk from healthy animals and in milk from animals with mastitis caused by different etiological agents. Low levels of GAGs (1.93 ± 0.40 mg) were found in milk samples obtained from healthy animals (H), while intermediate (2.4 ± 0.61 mg) and high levels (2.87 ± 0.7 mg) were found in milk obtained from cows with subclinical (SM) and clinical mastitis (CM), respectively. Statistically significant differences were found between the SM and H groups (p < 0.001) and between CM and the other groups (p < 0.0001). The highest levels of GAGs were detected in the CM group, in which coagulase negative Staphylococcus (CNS) and Streptococcus spp. were isolated. Animals infected by S. aureus had the highest levels of GAGs in the SM group. The sensitivity (Se) and specificity (Sp) for the assessment of GAGs levels for CM diagnosis were 89.7 % and 81.6 %, respectively. For the diagnosis of SM, Se and Sp were 73.2 % and 95 %, respectively. The area under the curve for the diagnosis of CM was 0.902 (p < 0.0001), while that for SM was 0.833 (p < 0.0001). Results suggest that the measurement of GAGs levels in milk can be used as an indicator of udder health in dairy cattle, since increased levels of GAGs were associated with mastitis.

___

  • 1. Gröhn, YT, Eicker, SW, Ducrocq, V, Hertil, JA. Effect of Diseases on the Culling of Holstein Dairy Cows in New York State. Journal of Dairy Science 1998: 81: 966-978. doi: 10.3168/ jds.S0022-0302(98)75657-7
  • 2. Bar D, Tauer LW, Bennett G, González RN, Hertl JA et al. The Cost of Generic Clinical Mastitis in Dairy Cows as Estimated by Using Dynamic Programming. Journal of Dairy Science 2008; 91: 2205-2214. doi:10.3168/jds.2007-0573
  • 3. Lakshmi R, Jayavardhanan KK. Screening of milk samples for sub-clinical and clinical mastitis by using CMT and SCC. Journal of Medical Science And Clinical Research 2016; 04; 10853-10855. doi:10.18535/jmscr/v4i6.27
  • 4. Dieser SA, Vissio C, Lasagno MC, Bogni CI, Larriestra AJ et al. Prevalence of Pathogens Causing Subclinical Mastitis in Argentinean Dairy Herds. Pakistan Veterinary Journal 2014; 34, 124-126.
  • 5. Oliver SP, Calvinho LF Influence of inflammation on mammary gland metabolism and milk composition. Journal of Animal Science 1995; 73: 18-33. doi:10.2527/1995.73suppl_218x
  • 6. Calvinho LF, Tirante L. Prevalencia de microorganismos patógenos de mastitis bovina y evolución del estado de salud de la glándula mamaria en Argentina en los últimos 25 años. FAVE Sección Cs Veterinarias 2005; 4: 1-2.
  • 7. Raspanti CG, Bonetto CC, Vissio C, Pellegrino MS, Reinosoa EB et al. Prevalence and antibiotic susceptibility of coagulasenegative Staphylococcus species from bovine subclinical mastitis in dairy herds in the central region of Argentina. Revista Argentina de Microbiología 2016; 48: 50-56. doi:10.1016/j.ram.2015.12.001
  • 8. Lundberg Å, Nyman AK, Aspán A, Börjesson S, Ericsson Unnerstad H et al. Udder infections with Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis at calving in dairy herds with suboptimal udder health. Journal of Dairy Science 2016; 99: 2102-2117. doi:10.3168/jds.2015- 9487
  • 9. Pyorala S. Indicators of inflammation in the diagnosis of mastitis. Veterinary Research 2003; 34: 565-578. doi:10.1051/ vetres:2003026
  • 10. Kandeel SA, Morin DE, Calloway CD, Constable PD. Association of California Mastitis Test Scores with Intramammary Infection Status in Lactating Dairy Cows Admitted to a Veterinary Teaching Hospital. Journal of Veterinary Internal Medicine 2018; 32: 497-505. doi:10.1111/ jvim.14888
  • 11. Hildebrandt Jørgensen C, Kristensen AR, Østergaard S, Bennedsgaard TW. Use of online measures of l-lactate dehydrogenase for classification of posttreatment mammary Staphylococcus aureus infection status in dairy cows. Journal of Dairy Science 2016; 99: 1-9. doi:10.3168/jds.2016-10858
  • 12. Gandhi NS; Mancera RL. The structure of glycosaminoglycans and their interactions with proteins. Chemical Biological and Drug Design 2008; 72: 455-482. doi:10.1111/j.1747- 0285.2008.00741.x
  • 13. Insua-Rodríguez J, Oskarsson T. The extracellular matrix in breast cáncer. Advanced Drug Delivery Reviews 2016; 97: 41- 55. doi:10.3168/jds.2015-10753
  • 14. Häcker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nature Reviews Molecular Cell Biology 2005; 6: 530-541. doi:10.1038/nrm1681
  • 15. Karousou E, D’Angelo ML, Kouvidi K, Vigetti D, Viola M et al. Collagen VI and hyaluronan: the common role in breast cancer. BioMed Research International 2014; 606458. doi:10.1155/2014/606458
  • 16. McIntosh J, Dennison G, Holly JM, Jarrett C, Frankow A et al. IGFBP-3 can either inhibit or enhance EGF-mediated growth of breast epithelial cells dependent upon the presence of fibronectin. Journal of biochemical chemistry 2010; 285: 38788-38800. doi:10.1074/jbc.M110.177311
  • 17. Nastase MV, Iozzo, RV, Schaefer L. Key roles for the small leucine-rich proteoglycans in renal and pulmonary pathophysiology. Biochimica et Biophysica Acta 2014 1840, 2460–2470. doi:10.1016/j.bbagen.2014.01.035
  • 18. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. Journal of Cell Science 2010; 123: 4195-4200. doi:10.1242/jcs.023820
  • 19. Newburg DS. Glycobiology of Human Milk. Biochemistry (Moscow) 2013; 78: 7: 771-785. doi:10.1134/ S0006297913070092
  • 20. Coppa GV, Gabrielli O, Buzzega D, Zampini L, Galeazzi T et al. Composition and structure elucidation of human milk Glycosaminoglycans. Glycobiology 2011; 21: 295-303. doi:10.1093/glycob/cwq164
  • 21. Pinzon-Sanchez C, Ruegg PL. Risk factors associated with short-term post-treatment outcomes of clinical mastitis. Journal of Dairy Science 2011; 94: 3397-3410. doi:10.3168/ jds.2010-3925
  • 22. Hogan JS, González RN, Harmon RJ, Nickerson SC, Oliver SP. Laboratory Handbook on Bovine Mastitis. National Mastitis Council Inc. Madison, WI. 1999;Pp. 222.
  • 23. Schalm OW, Noorlander DO. Experiments and observations leading to development of the California Mastitis Test. Journal of the American Veterinary Medical Association 1957; 130: 199-204.
  • 24. Roy JP, Du Tremblay D, Descoteaux L, Messier S, Scholl D et al. Evaluation of the California Mastitis Test as precalving treatment selection tool for Holstein heifers. Veterinary Microbiology 2009; 134: 136-142. doi:10.1590/s0100- 736x2016000900004
  • 25. Farndale RW, Sayers CA, Barrett AJ. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connective Tissue Research 1987; 9: 247-248. doi:10.3109/03008208209160269
  • 26. Greiner M, Pfeiffer D, Smith RD. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Preventive Veterinary Medicine 2000; 45: 23- 41. doi:10.1016/S0167-5877(00)00115-X
  • 27. Souza FN, Cunha AF, Rosa DLS, Brito MA, Guimarães AS et al. Somatic cell count and mastitis pathogen detection in composite and single or duplicate quarter milk samples. Pesquisa Veterinária Brasileira 2016; 36: 811-818. doi:10.1590/ S0100-736X2016000900004
  • 28. Baccarin RYA, Machado TSL, Lopes-Moraes AP, Vieira FAC, Michelacci YM. Urinary glycosaminoglycans in horse osteoarthritis. Effects of chondroitin sulfate and glucosamine. Research in Veterinary Science 2012; 93: 88-96. doi:10.1016/j. rvsc.2011.08.009
  • 29. Mizuguchi T, Katsuramaki T, Nobuoka T, Kawamoto M, Oshima H et al. Serum Hyaluronate Level for Predicting Subclinical Liver Dysfunction after Hepatectomy. World Journal of Surgery 2004; 28: 971-976. doi:10.1007/s00268-004- 7389-1
  • 30. Vilar JM, Rubio M, Spinella G, Cuervo B, Sopena J et al. Serum Collagen Type II Cleavage Epitope and Serum Hyaluronic Acid as Biomarkers for Treatment Monitoring of Dogs with Hip Osteoarthritis. PLoS One 2016; 11 e0149472. doi:10.1371/ journal.pone.0149472.
  • 31. Kandeel SA, Megahed AA, Arnaout FK, Constable PD. Evaluation and Comparison of 2 On-Farm Tests for Estimating Somatic Cell Count in Quarter Milk Samples From Lactating Dairy Cattle. Journal of Veterinary Internal Medicine 2018; 32: 506-515. doi:10.1111/jvim.14876
  • 32. Fosgate GT, Petzer IM, Karzis J. Sensitivity and specificity of a hand-held milk electrical conductivity meter compared to the California mastitis test for mastitis in dairy cattle. The Veterinary Journal 2013; 196: 98-102. doi:10.1016/j. tvjl.2012.07.026
  • 33. Roberts MA, Mendez U, Gilbert RJ, Keim AP, Goldman J. Increased Hyaluronan Expression at Distinct Time Points in Acute Lymphedema. Lymphatic Research Biology. 2012; 10: 122-128. doi:10.1089/lrb.2012.0001
  • 34. Caggiano N, Lorenzo Smirnoff A, Bottini JM, De Simone EA. Protease activity and protein profile in milk from healthy dairy cows and cows with different types of mastitis. International Dairy Journal 2019; 89: 1-5. doi:10.1016/j.idairyj.2018.07.020
  • 35. Chen Y, Bennett A, Hayashida A, Hollingshead S, Park PW. Streptococcus pneumoniae sheds syndecan-1 ectodomains via ZmpC, a metalloproteinase virulence factor. Journal of Biochemical Chemistry 2007; 282: 159-167. doi:10.1016/j. matbio.2014.01.011
  • 36. DeAngelis PL. Microbial glycosaminoglycan glycosyltransferases. Glycobiology 2002; 12: 9-16. doi:10.1093/glycob/12.1.9R
  • 37. Ibberson CB, Parlet CP, Kwiecinski J, Crosby HA, Meyerholz DK et al. Hyaluronan Modulation Impacts Staphylococcus aureus Biofilm Infection. Infection and Immunity 2016; 84: 1917-1929. doi:10.1128/IAI.01418-15.
  • 38. Renna MS, Silvestrini P, Beccaria C, Velázquez NS, Baravalle C et al. Effects of chronic Staphylococcus aureus infection on immunological parameters and functionality of macrophages isolated from bovine mammary secretions. Microbial Pathogenesis 2019; 137: 1-8. doi:10.1016/j. micpath.2019.103743
  • 39. Heikkilä AM, Liski E, Pyörälä S, Taponen S. Pathogen-specific production losses in bovine mastitis. Journal of Dairy Science 2018; 101: 9493-9504. doi:10.3168/jds.2018-14824
  • 40. Cengiz N, Baskin E, Anarat R, Agras PI, Yildirim SV et al. Glycosaminoglycans in childhood urinary tract infections. Pediatric Nephrolpgy 2005; 20: 937-939. doi:10.1007/s00467- 005-1856-2
  • 41. Jashari R, Piepers S, De Vliegher S. Evaluation of the composite milk somatic cell count as a predictor of intramammary infection in dairy cattle. Journal of Dairy Science 2016; 99: 9271-9286. doi:10.3168/jds.2015-10753
  • 42. Dalen G, Rachah A, Nørstebø H, Schukken YH, Reksen O. The detection of intramammary infections using online somatic cell counts. Journal of Dairy Science 2019; 102: 5419-5429. doi:10.3168/jds.2018-15295
  • 43. Brown WE, DuRaine G, Hu JC, Athanasiou KA. StructureFunction Relationships of Fetal Ovine Articular Cartilage.” Acta Biomaterialia 2019; 87: 235-244. doi:10.1016/j. actbio.2019.01.073
  • 44. Malek dos Reis CB, Barreiro JR, Moreno JFG, Porcionato MAF, Santos MV. Evaluation of somatic cell count thresholds to detect subclinical mastitis in Gyr cows. Journal of Dairy Science 2011; 94: 4406-4412 doi:10.3168/jds.2010-3776
  • 45. Vissio C, Dieser SA, Agnelli HL, Odierno LM, Larriestra AJ. Accuracy of the composite somatic cell count to detect intra-mammary infection in dairy cows using latent class analysis. Preventive Veterinary Medicine 2014; 113: 547-555. doi:10.1016/j.prevetmed.2013.11.016
  • 46. Ali Naqvi S, De Buck J, Dufour S, Barkema HW. Udder health in Canadian dairy heifers during early lactation. Journal of Dairy Science 2018; 101: 3233-3247. doi:10.3168/jds.2017- 13579
Turkish Journal of Veterinary and Animal Sciences-Cover
  • ISSN: 1300-0128
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

The effects of upgrading and intersecting cross-breeding strategies on the geese economic traits

Yujian SUI, Qiong LIU, Chenguang XU, Wei YANG

Levels of milk glycosaminoglycans in Holstein cows with clinical and subclinical mastitis

Emilio DE SIMONE, Nicolás, CAGGIANO, Elisa, CRESPI, Gonzalo, FIORINI

Anatomical and histological structures of eye and lacrimal gland in Norduz and Morkaraman sheep

Kadir ASLAN, Semine DALGA, Turgay DEPREM, Serap İLHAN AKSU, Reşit UĞRAN

Productive performance, egg quality, and hatching traits of Japanese quail lines selected for higher body weight and egg number

Jibran HUSSAIN, Khalid JAVED, Abd ur REHMAN, Sohail AHMAD, Athar MAHMUD, Abdul GHAYAS

The impact of Fusarium mycotoxins on macro and micro parameters of dairy cattle

Bronius BAKUTIS, Jurgita JOVAIŠIENĖ, Gintarė VAIČIULIENĖ, Gediminas GERULIS, Rimvydas FALKAUSKAS, Rasa ŽELVYTĖ, Violeta BALIUKONIENĖ, Ignas ŠILINSKAS, Elena BARTKIENĖ, Jolita KLEMENTAVIČIŪTĖ

Development of two novel SYBR green-based quantitative PCR assays for detection and quantification of Mycoplasma gallisepticum and Mycoplasma synoviae

Mohsen BASHASHATI, Fereshteh SABOURI

Some hematological parameters and enzyme histochemistry of peripheral blood leukocytes in Kivircik sheep

Mehmet Faruk AYDIN, İhsan KISADERE

Effects of dietary calcium, phosphorus and microbial phytase on intestinal morphology in laying hens

Ender Deniz ASMAZ, İhsan İŞBİLİR, Sabire GÜLER, Nuray VAROL KAYAPUNAR, Eyüp Eren GÜLTEPE, Derya YEŞİLBAĞ, Şerife Şule CENGİZ, Ahmet Batuhan ŞANLI

Effects of age and body region on wool characteristics of Merino sheep crossbreds in Turkey

Sedat BEHREM, Sabri GÜL

Evaluation of morphological traits in Aseel and Kadaknath breeds under backyard poultry farming using principal component analysis

Poonam RATWAN, Manoj KUMAR, Satpal DAHIYA, Nancy SHEORAN