Investigation of IgG, vimentin, CD45 distribution, and density in mouse placenta at different periods of pregnancy

Investigation of IgG, vimentin, CD45 distribution, and density in mouse placenta at different periods of pregnancy

The aim of this study was to investigate the distribution and density of IgG, vimentin, and CD45 in mouse placenta on the fourth, tenth, and seventeenth days of pregnancy. Strept avidin-biotin-peroxidase complex (streptABC) staining method was used. On the fourth day of pregnancy, the expression of IgG, vimentin, and CD45 was more intense around the uterine glands. On the tenth day, IgG, vimentin and CD45 positive cells were demonstrated in decidua basalis and mesometrial parietal trophoblast giant cells (P-TGCs) and mesometrial lymphocyte groups (MLAp) portions. The formation of the placenta was completed on the seventeenth day of pregnancy. The expression of IgG in the labyrinth placenta as well as in the decidual spaces was evident on the seventeenth day of pregnancy. While the expression of vimentin was observed in the labyrinth placenta and the MLAp in a granular fashion, CD45 was expressed in a few P-TGCs as well as in MLAp along with vimentin.

___

  • 1. Madazlı R. Plasenta. 1st ed. İstanbul. Nobel Tıp Kitapevleri; 2008.
  • 2. Furukawa S, Hayashi S, Usuda K, Abe M, Hagio S et al. Toxicological pathology in the rat placenta. Journal of Toxicologic Pathology 2011; 24 (2): 95-111. doi: 10.1293/ tox.24.95
  • 3. Tewari V, Tewari A, Bhardwaj N. Histological and histochemical changes in the placenta of diabetic pregnant females and its comparison with the normal placenta. Asian Pacific Journal of Tropical Disease 2011; 1 (1): 1-4. doi:10.1016/S2222- 1808(11)60001-7
  • 4. Wang, Y, Zhao S. Vascular biology of the placenta. In: Colloquium Series on Integrated Systems Physiology: from Molecule to Function. Morgan & Claypool Life Sciences 2010; 1-98. doi:10.4199/C00016ED1V01Y201008ISP009
  • 5. Arvola M. Immunological aspects of maternal-fetal interactions in mice. MSc, Acta Universitatis Upsaliensis, Sweden, 2001.
  • 6. Male DK, Brostoff J, Roth DB, Roith I. Immunology: An Illustrated Outline. Palme Yayıncılık Ankara, 2008. pp. 564.
  • 7. Garty BZ, Ludomirsky A, Danon YL, Peter JB, Douglas SD. Placental transfer of immunoglobulin G subclasses. Clinical and Diagnostic Laboratory Immunology 1994; 1 (6): 667-669. doi: 10.1128/cdli.1.6.667-669.1994
  • 8. Palfi M, Selbing A. Placental transport of maternal immunoglobulin G. American Journal of Reproductive Immunology 1998; 39 (1): 24-26. doi: 10.1111/j.1600- 0897.1998.tb00329.x
  • 9. Altin JG, Sloan EK. The role of CD45 and CD45-associated molecules in T cell activation. Immunol Cell Biology 1997; 75 (5): 430-445. doi: 10.1038/icb.1997.68
  • 10. Nakano A, Harada T, Morikawa S, Kato Y. Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines. Acta Pathologica Japonica 1990; 40: 107-115. doi: 10.1111/j.1440-1827.1990.tb01549.x
  • 11. Edwards AK, Janzen-Pang J, Peng A, Tayade C, Carniato A et al. Microscopic Anatomy of the Pregnant Mouse Uterus Throughout Gestation. In: Croy BA, Yamada AT, DeMayo FJ, Adamson SL(eds.), The Guide to Investigation of Mouse Pregnancy. Academic Press, Boston; 2014. pp. 43-67.
  • 12. Wang N, Stamenovic D. Mechanics of vimentin intermediate filaments. Journal of Muscle Research & Cell Motility 2002; 23 (5-6): 535-540. doi: 10.1023/a:1023470709071
  • 13. Korgun ET, Cayli S, Asar M, Demir R. Distribution of laminin, vimentin, and desmin in the rat uterus during initial stages of implantation. Journal of Molecular Histology 2007; 38 (4): 253- 260. doi: 10.1007/s10735-007-9095-4
  • 14. Bratthauer GL. The avidin-biotin complex (ABC) method and other avidin-biotin binding methods. Methods in Molecular Biology 2010; 588: 257-270. doi: 10.1007/978-1-59745-324-0_26
  • 15. Borghesi J, Mario LC, Rodrigues MN, Favaron PO, Miglino MA. Immunoglobulin transport during gestation in domestic animals and humans, a review. Open Journal of Animal Sciences 2014; 04 (05): 323-336. doi: 10.4236/ojas.2014.45041
  • 16. Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, CarneiroSampaio M. IgG placental transfer in healthy and pathological pregnancies. Clinical & developmental immunology 2012; 985646-46. doi: 10.1155/2012/985646
  • 17. Parr EL, Parr MB. Localization of immunoglobulins in the mouse uterus, embryo, and placenta during the second half of pregnancy. Journal of Reproductive Immunology 1985; 8 (2-3): 153-171. doi: 10.1016/0165-0378(85)90038-5
  • 18. Gurevich P, Elhayany A, Ben Hur H, Moldavsky M, Szvalb S et al. An immunohistochemical study of the secretory immune system in human fötal membranes and decidua of the first trimester of pregnancy. American Journal of Reproductive Immunology 2003; 50 (1): 13-19. doi:10.1034/j.1600-0897.2003.01201.x
  • 19. Wilcox CR, Holder B, Jones CE. Factors affecting the FcRnmediated transplacental transfer of antibodies and implications for vaccination in pregnancy. Frontiers in Immunology 2017; 8 (1294): 86-91. doi: 10.3389/fimmu.2017.01294
  • 20. Fouda GG, Martinez DR, Swamy GK, Permar SR. The impact of IgG transplacental transfer on early life immunity. ImmunoHorizons 2018; 2 (1): 14-25. doi: 10.4049/ immunohorizons.1700057
  • 21. Simister NE, Story CM, Chen H, Hunt JS. An IgG transporting Fc receptor is expressed in the syncytiotrophoblast of the human placenta. European Journal of Immunology 1996; 2 (6): 1527- 1531. doi: 10.1002/eji.1830260718
  • 22. Kristoffersen EK. Placental Fc receptors and the transfer of maternal IgG. Transfusion Medicine Reviews 2000; 14 (3): 234- 243. doi:10.1053/tm.2000.7393
  • 23. Kiskova T, Mytsko Y, Schepelmann M, Helmer H, Fuchs R et al. Expression of the neonatal Fc-receptor in placentalfötal endothelium and cells of the placental immune system. Placenta 2019; 78: 36-43. doi: 10.1016/j.placenta.2019.02.012
  • 24. Kim J, Mohanty S, Ganesan LP, Hua K, Jarjoura D et al. FcRn in the yolk sac endoderm of the mouse is required for IgG transport to fetüs. The Journal of Immunology 2009; 182 (2): 2583-2589.
  • 25. Latvala S, Jacobsen B, Otteneder MB, Herrmann A, Kronenberg S. Distribution of FcRn across species and tissues. Journal of Histochemistry & Cytochemistry 2017; 65 (6): 321-333. doi: 10.1369/0022155417705095
  • 26. McCance KL, Huether SE. Mechanics of self-defense. In: Pathophysiology. Ohio 2014. pp. 191-338.
  • 27. De Souza PC, Katz SG. Coexpression of cytokeratin and vimentin in mice trophoblastic giant cells. Tissue and Cell 2001; 33 (1): 40-45. doi: 10.1054/tice.2000.0148
  • 28. Abou-Kheir W, Eid A, El-Merahbi R, Assaf R, Daoud G. A unique expression of keratin 14 in a subset of trophoblast cells. PloS one 2015; 10 (10). doi: 10.1371/journal.pone.0139939
  • 29. Khong TY, Lane EB, Robertson WB. An immunocytochemical study of fötal cells at the maternal-placental interface using monoclonal antibodies to keratins, vimentin, and desmin, Cell and Tissue Research 1986; 246 (1); 189-195. doi: 10.1007/ BF00219017
  • 30. Scherholz PL, De souza PC, Spadacci-Morena DD, Katz SG. Vimentin is synthesized by mouse vascular trophoblast giant cells from embryonic day 7.5 onwards and is a characteristic factor of these cells. Placenta 2013; 34 (7): 518-525. doi: 10.1016/j.placenta.2013.04.003
  • 31. Carter AM, Tanswell B, Thompson K, Han VK. Immunohistochemical identification of epithelial and mesenchymal cell types in the chorioallantoic and yolk sac placentae of the guinea pig. Placenta 1998; 19 (7): 489-500. doi: 10.1016/s0143-4004(98)91042-6
  • 32. Sharkey AM, King A, Clark DE, Burrows TD, Jokhi PP et al. Localization of leukemia inhibitory factor and its receptor in human placenta throughout pregnancy. Biology of Reproduction 1999; 60 (2): 355-364. doi: 10.1095/ biolreprod60.2.355
  • 33. Kar M, Sengupta J, Kumar S, Bhargava VL, Ghosh D. Immunohistochemical localization of macrophage CD68+, HLA-DR+, L1+ and CD44+ subsets in the uterine endometrium during different phases of the menstrual cycle. Indian journal of physiology and pharmacology 2004; 48 (3): 293-303. PMID: 15648401
  • 34. Sasaki T, Mizuochi C, Horio Y, Nakao K, Akashi K et al. Regulation of hematopoietic cell clusters in the placental niche through SCF/Kit signaling in the embryonic mouse. Development 2010; 137 (23): 3941-3952. doi: 10.1242/ dev.051359
  • 35. Ottersbach K, Dzierzak E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Developmental Cell 2005; 8 (3): 377-387. doi: 10.1016/j. devcel.2005.02.001
  • 36. Low BG, Hansen PJ, Drost M, Gogolin-Ewens KJ. Expression of major histocompatibility complex antigens on the bovine placenta. Reproduction 1990; 90 (1): 235-243. doi: 10.1530/ jrf.0.0900235
Turkish Journal of Veterinary and Animal Sciences-Cover
  • ISSN: 1300-0128
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Effects of dietary insect (Ephestia kuehniella) egg meal on growth performance and fatty acid profile of common carp (Cyprinus carpio)

Levent DOĞANKAYA

Comparison of M, MM and LTS estimators in linear regression in the presence of outlier

Cem TIRINK, Hasan ÖNDER

Investigation of IgG, vimentin, CD45 distribution, and density in mouse placenta at different periods of pregnancy

Seçil KOÇ, Şadiye KUM

Determination of the morphometric characteristics of donkey (Equus asinus) populations reared in Turkey

Fulya ÖZDİL, Selçuk KAPLAN, Serdar GENÇ, Hasan BULUT, Selen YATKIN, Sezen ARAT, Eser Kemal GÜRCAN, Mehmet İhsan SOYSAL, Emel ÖZKAN ÜNAL

Comparison of low-level laser and dimethyl sulfoxide applications for the treatment of tendon injury in rabbits

Duygu YAMAN GRAM, Kardelen CEYDELİOĞLU, Gültekin ATALAN, Gökçen PERK

Determining the genetic diversity of silkworm lines in Turkey

Ezgi ODABAŞ, İbrahim CEMAL

Occurrence of some pathogenic bacteria in cattle feed samples before and after invasion by European starlings

İbrahim AYTEKİN, İsmail KESKIN, Özcan ŞAHİN, Saim BOZTEPE, Uğur ZÜLKADİR, Talha DEMİRCİ

The in vitro effect of hypochlorous acid-metal nanoparticles combination on Salmonella under different temperature conditions

Karlo MURATOĞLU, Serkan Kemal BÜYÜKÜNAL, Ahmet KOLUMAN

The molecular prevalence of Borrelia burgdorferi, Babesia spp., and Anaplasma spp. in shelter dogs of the Thrace Region in Turkey

Nuri ALTUĞ, Fulya ALTINOK YİPEL, Dilek MUZ, Mustafa Necati MUZ

Do horses learn how to reach for feed depending on the time of day?

Agnieszka ZIEMIAŃSKA, Maciej TROJAN, Konrad BAZEWICZ, Justyna WOJTAŚ, Tomasz PRÓCHNIAK, Iwona ROZEMPOLSKA-RUCIŃSKA