In vitro effects of linamarin, amygdalin and gossypol acetic acid on hyaluronidase activity, sperm motility and morphological abnormality in bull sperm

Bu çalışmada, farklı dozlardaki linamarin, amigdalin ve gossipol asetik asit'in in vitro olarak boğa spermi hyaluronidaz aktivitesi, motilitesi ve anormal spermatozoa yüzdeleri üzerine olan etkileri araştırıldı. Çalışmada 2 ile 3 yaşları arasında 12 adet Holştayn ırkı boğa kullanıldı. İnkubasyonlar için kullanılacak olan sperma örnekleri her hayvandan üç kez alındı. Numuneler 5 eşit kısma ayrıldı ve 1:1 (v/v) oranında, 0,5, 0,75, 1 ve 2 $mu$ M linamarin, 0,4, 0,8, 1 ve 2 $mu$ M amigdalin ve 2,5, 5, 1O ve 20 $mu$ M gossipol asetik asit solusyonlanyla karıştırıldı. Bu çalışmada hyaluronik asitten son ürün olarak sakkaritler ve N-asetilglukozamin ayrışması esasına dayanan kolorimetrik metot kullanıldı. Sperm motilitesi ve morfolojisi ise faz-kontrast mikroskop yardımıyla tayin edildi. Üç bileşiğin boğa spermi ile inkübasyonu, hyaluronidaz aktiviteleri (P < 0,01) ile sperm motilitelerinde (P < 0,001) kontrol grubuna göre önemli oranda azalmalara neden oldu. Ayrıca, gossipol asetik asit, inkübasyon periyodunda anormal spermatozoa oranını da önemli (P < 0,001) oranda artırdı. Bu sonuçlar, linamarin, amigdalin ve gossipol asetik asit'in boğa spermi üzerinde doza bağımlı olarak zararlı etkilere neden olduğunu göstermektedir.

Linamarin, Amigdalin ve gossipol asetik asit'in boğa spermasının hiyaluronidaz aktivitesi, sperm motilitesi ve morfolojik anormallik üzerine olan in vitro etkileri

In vitro effects of various doses of linamarin, amygdalin and gossypol acetic acid on sperm hyaluronidase activity and the percentages of motile spermatozoa and morphology were investigated in bull sperm. Holstein bulls (n = 12) aged between 2 and 3 were used in the study. Semen samples were collected from each animal 3 times and used for incubation. The samples were divided into 5 equal parts and mixed (v/v) with linamarin at doses of 0.5, 0.75, 1 and 2 $mu$ M, with amygdalin at doses of 0.4, 0.8, 1 and 2 $mu$ M and with gossypol acetic acid at doses of 2.5, 5, 10 and 20 $mu$ M. The colorimetric method based on the liberation of saccharides with N-acetylglucosamine end - groups from hyaluronic acid was used for the determination of semen hyaluronidase activity in this study. Sperm motility and morphology were assessed under a phase-contrast microscope. The incubation of the 3 compounds with sperm caused significant decreases in spermatozoa motility (P < 0.001) and hyaluronidase activity (P < 0.01) compared with the control group. Additionally, gossypol acetic acid produced a significant (P < 0.001) increase in the rate of abnormal spermatozoa during the incubation period. These results showed that linamarin, amygdalin and gossypol acetic acid have deleterious effects on bull spermatozoa in a dose - dependent manner.

___

  • 1. Majak, W., McDiarmid, R.E., Hall, J.W., Cheng, K.J.: Factors that determine rates of cyanogenesis in bovine runhinal fluid in vitro, j. Anim. Sci., 1990; 68: 1648-1655. 2. Akintonwa, A., Tunwashe O.L.: Fatal cyanide poisoning from cassava-based meal. Hum. Exp. Toxicol., 1992; 1II: 47-49.
  • 3. Conn, E.E.: Biosynthesis of cyanogenic glycosides. Naturwissenschaften, 1979, 66: 28-34.
  • 4. Tanyildızı, S.: The determination of HCN levels in experimentally poisoned mice with cyanide. J. Vet. Sci., 1997; 13: 29-42.
  • 5. Vickery, P.J., Wheeler, J.L., Mulcahy, C: Factors affecting the hydrogen cyanide potential of white clover (Trifolium repens). Aus. J. Agric. Res., 1987; 3: 1053-1059.
  • 6. Strugala, G.J., Stahl, R., Elsenhans, B., Rauws, A.G., Fort, W.: Small-intestinal transfer mechanism of prunasin, the primary metabolite of the cyanogenic glycoside amygdalin. Hum. Exp. Toxicol., 1995; 14:895-901.
  • 7. Adewusi, S.R., Oke, O.L.: On the metabolism of amygdalin. 2. The distribution of beta-glucosidase activity and orally administered amygdalin in rats. Can. J. Physiol. Pharmacol., 1985; 63: 1084-1087.
  • 8. Prasad, M.R.N., Diczfalusy, E.: Gossypol. Int. J. Androl., 1982; 5: 53-69.
  • 9. Ciereszko, A., Dabrowski, K.: In vitro effect of gossypol acetate on yellow perch (Perca flavescens) spermatozoa. Aqua. Toxicol., 2000; 49: 181-187.
  • 10. Schulke, B., Jacobi, K., Schwan, K., Schroder, A., Tegeler, G., Hahn S.: Hyaluronidase release in bull sperm-influence of media and temperature. Arch. Exp. Veterinarmed., 1990; 44: 135-142.
  • 11. Tanyildızı, S., Bozkurt, T.: An investigation of the effects of ivermectin on blood serum, semen hyaluronidase activities and spermatological characteristics in sheep. Turk. J. Vet. Anim. Sci., 2002; 26: 353-357.
  • 12. Hirayama, T., Hasegawa, T., Hirai, M.: The measurement of hyaluronidase activity in human spermatozoa by substrate slide assay and its clinical application. Fertil. Steril., 1989; 51: 330-334.
  • 13. Bearden, H.J., Fuquay, J.W.: Semen collection. In: Applied animal reproduction. Prentice Hall International, London, U.K. Urn., Ed. Bearden, HJ. 1992, p. 152-163.
  • 14. Wilkinson, C.R., Bower, L.M., Warren, C: Measurement of hyaluronidase activity in normal human serum. J. Pharmaceut Biomed., 1996; 14: 707-712.
  • 15. Joyce, C.L., Mack, S.R., Anderson, R.A.: Effects of hyaluronidase, 6-glucuronidase and S-N-acetylglucosaminidase inhibitors on sperm penetration of the mouse oocyte. Biol. Reprod., 1986; 35:336-346.
  • 16. Yuan, Y.Y., Shi, Q. X.: Inhibition of hamster sperm acrosomal enzyme by gossypol is closely associated with the decrease in fertilization capacity. Contraception, 2000; 62: 203-209.
  • 17. Meyers, S.A., Rosenberger, A.E.: A plasma membrane-associated hyaluronidase is localized to the posterior acrosomal region of stallion sperm and is associated with spermatozoa function. Biol. Reprod., 1999:61:444-451.
  • 18. Philippe, M., Chevaillier, P.: Extraction and biochemical characterization of a nuclear deoxyribonucleic acid polymerase activity in bull spermatozoa. Biochem. J., 1978; 175: 585-594.
  • 19. Waga, S., Masuda, T., Takisawa, H.: DNA polymerase varepsilpn is required for coordinated and efficient chromosomal DNA replication in Xenopus egg extracts. Proc. Natl. Acad. Sci. USA. 200:98:4978-4983.
  • 20. Mizushina, Y., Takahashi, N., Ogewa, A., Tsurugaya, K., Koshino, H., Takemura, M., Yoshida, S., Matsukage, A., Sugawara, F., Sakaguchi, K.: The cyanogenic glucoside, prunasin (D- mandelonitrile-beta-D-glucoside), is a novel inhibitor of DNA polymerase beta. J. Biochem. (Tokyo), 1999; 126:30-436.
  • 21. Fujisawa, M., Yoshida, S., Matsumoto, 0., Kojima, K., Kamidona, S.: Deoxyribonucleic acid polymerase activity in the testes of infertile men with varicocele. Fertil. Steril., 1988; 50: 795-800.
  • 22. Chongthammakun, S., Ekavipot, C, Sanitwong, B.: Effects of gossypol on human and monkey sperm motility in vitro. Contraception, 1986; 34: 323-331.
  • 23. Hong, C.Y., Huang, J.J., Wu, P.: The inhibitory effect of gossypol on human sperm motility: relationship with time, temperature and concentration. Hum. Toxicol., 1989; 8: 49-51.
  • 24. Ueno, H., Sahmi, M.K., Segal, S.J.: Interaction of gossypol with sperm macromolecules and enzymes. Contraception, 1988; 3:333-341
  • 25. Breitbart, H., Rubinstein, S., Nass-Arden, L: Effect of gossypol- acetic acid on calcium transport and ATPase activity in plasma membranes from ram and bull spermatozoa. Int. J. Androl., 1984;7:439-447.
  • 26. Haffer, A.P.: Effects of gossypol on the seminiferous epithelium in the rat a light and electron microscope study. Biol. Reprod., 1983; 28: 1000-1003.
  • 27. Randell, R.D., Chase C.C., Wyse, S.J.: Effects of gossypol and cottonseed products on reproduction of mammals. J. Anim. Sci., 1992; 70: 1628-1638.
  • 28. Shi, Q.X., Friend, D.S.: Gossypol-induced inhibition of guinea pig sperm capacitation in vitro. Biol. Reprod., 1983; 29: 1027-1030.