Effect of kefir consumption on intestinal microbiota and some blood parameters in Angora cats

Effect of kefir consumption on intestinal microbiota and some blood parameters in Angora cats

Probiotics are one of the best alternatives to improve gut health. Kefir, which was discovered in the North Caucasus centuries ago, is still consumed frequently today due to its health benefits. Its impacts on the gastrointestinal system have begun to be investigated in animals. In this study, we focused to examine the effect of kefir on intestinal microbiota, some hematological parameters, and fecal quality in Angora cats to provide preliminary data regarding the hypothesis of its use as an alternative probiotic food supplement. Commercial kefir was given orally (30 mL/kg) to seven healthy Angora cats for 14 days. On day 0 and day 14, fresh feces and blood of the cats were collected. The results showed that two-week kefir consumption significantly increased the number of total mesophilic aerobic bacteria, lactococci, lactobacilli, and yeast in the gut microbiota (p < 0.05). Also, a significant decrease was recorded in the number of enterococci (p < 0.05). Measured hematological parameters (WBC, RBC, HGB, PCV, MCV, MCH, MCHC, PLT) were not affected during the experiment (p > 0.05). Among the biochemical parameters (ALT, AST, TP, TG, TC, HDL, LDL, LDH, K, Ca, Na) only a decrement in the activity of LDH, and an increment in K were observed after two-week of kefir consumption (p < 0.05). Additionally, no significant changes were recorded in the body weights, body condition scores, fecal scores, and fecal water contents (p > 0.05). Daily kefir consumption positively altered the intestinal microbiota of Angora cats by increasing the total mesophilic aerobic bacteria, lactococci, lactobacilli, and yeast. Moreover, no detrimental effect was observed in the blood parameters, body condition scores, and fecal quality. Therefore, it could be suggested that including kefir in Angora cats’ daily diets can improve their health conditions.

___

  • 1. Suchodolski JS. Intestinal microbiota of dogs and cats: a bigger world than we thought. Veterinary Clinics of North America: Small Animal Practice 2011; 41 (2): 261-272. doi:10.1016/j. cvsm.2010.12.006
  • 2. Lee W-J, Hase K. Gut microbiota-generated metabolites in animal health and disease. Nature Chemical Biology 2014; 10: 416e424. doi: 10.1038/ nchembio.1535
  • 3. Garcia-Mazcorro J.F, Lanerie DJ, Dowd SE, Paddock CG, Grützner N et al. Effect of a multi-species synbiotic formulation on fecal bacterial microbiota of healthy cats and dogs as evaluated by pyrosequencing. FEMS Microbiology Ecology 2011; 78 (3): 542-554. doi:10.1111/j.1574-6941.2011.01185.x
  • 4. Guzel-Seydim ZB, Kok-Tas T, Greene AK, Seydim A. Review: Functional Properties of Kefir. Critical Reviews in Food Science and Nutrition 2011; 51 (3): 261- 268. doi:10.1080/10408390903579029
  • 5. Taş TK, Ekinci FY, Guzel-Seydım ZB. Identification of microbial flora in kefir grains produced in Turkey using PCR. International Journal of Dairy Technology 2011; 65 (1): 126- 131. doi:10.1111/j.1471-0307.2011.00733.x
  • 6. Kim D-H, Chon J-W, Kim H, Seo KH. Modulation of intestinal microbiota in mice by kefir administration. Food Science and Biotechnology 2015; 24 (4) 1397-1403. doi:10.1007/s10068- 015-0179-8
  • 7. Kim D-H, Jeong D, Kang I-B, Lim HW, Cho Y et al. Modulation of the intestinal microbiota of dogs by kefir as a functional dairy product. Journal of Dairy Science 2019; 102: 1-9. doi:10.3168/ jds.2018-15639
  • 8. Ozsoy B, Cantekin Z, Yalcin S, Bayraktar HS. Effects of kefir on blood parameters and intestinal microflora in rats - an experimental study. Kafkas Universitesi Veteriner Fakültesi Dergisi 2021; 27 (1): 111-115. doi:10.9775/kvfd.2020.24855
  • 9. Erat S, Arıkan Ş. The hair characteristics of Turkish Angora and Van cats. Turkish Journal of Veterinary and Animal Sciences 2012; 36 (3): 215-221. doi:10.3906/vet-0804-21
  • 10. Atmaca N, Simsek O, Arikan S, Kabakci R. Evaluation of some electrocardiographic parameters of kitten and adult angora cats. Research Journal for Veterinary Practitioners 2014; 2 (6): 113-116. doi:10.14737/journal.rjvp/2014/2.6.113.116
  • 11. Kabakci R, Bülbül S. Effects of age and gender on the concentrations of plasma homocysteine, vitamin B12 and folic acid in Angora cats. International Journal of Veterinary and Animal Research (IJVAR) 2021; 4 (1): 22-26.
  • 12. Şimşek Ö, Arıkan Ş, Çınar M. Reference values for selected hematological and biochemical blood parameters from prepregnancy to advanced gestation in Angora cats. Turkish Journal of Veterinary and Animal Sciences 2015; 39 (1): 29-33. doi:10.3906/vet-1405-2
  • 13. Marshall-Jones ZV, Baillon M-LA, Croft JM, Butterwick RF. Effects of Lactobacillus acidophilus DSM13241 as a probiotic in healthy adult cats. American Journal of Veterinary Research 2006; 67 (6): 1005-1012. doi:10.2460/ajvr.67.6.1005
  • 14. Jeong D, Kim D-H, Kang I-B, Kim H, Song KY et al. Modulation of gut microbiota and increase in fecal water content in mice induced by administration of Lactobacillus kefiranofaciens DN1. Food Functions 2017; 8 (2): 680-686. doi:10.1039/ C6FO01559J
  • 15. Shin D, Chang SY, Bogere P, Won K, Choi JY et al. Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. Plos One 2019; 14 (8): e0220843. doi:10.1371/journal.pone.0220843
  • 16. Xu H, Zhao F, Hou Q, Huang W, Liu Y et al. Metagenomic analysis revealed beneficial effects of probiotics in improving the composition and function of the gut microbiota in dogs with diarrhoea. Food & Function 2019; 10 (5): 2618-2629. doi:10.1039/C9FO00087A
  • 17. International Standards Organization (ISO). Microbiology of food and animal feeding stuffs — Horizontal methods for the detection and enumeration of Enterobacteriaceae, 2004; 21528- 2.
  • 18. International Standards Organization (ISO). Microbiology of food and animal feeding stuffs — Horizontal method for the enumeration of microorganisms - Colony-count technique at 30 °C. 2003: 4833.
  • 19. International Standards Organization (ISO). Microbiology - General guidance for the enumeration of coliforms - Colony count technique. 2004: 4832.
  • 20. International Standards Organization (ISO). Microbiology of food and animal feeding stuffs — Horizontal method for the enumeration of mesophilic lactic acid bacteria — Colonycount technique at 30 °C. 2004: 15214.
  • 21. Onaran B, Çufaoğlu G. Comparison of microbial population of household and commercial kefirs in Ankara, Turkey. Journal of Turkish Veterinary Medical Society 2017; 88 (1): 52-58.
  • 22. Lewis SJ and Heaton KW. Stool form as a useful guide to intestinal transit time. Scandinavian Journal of Gastroenterology 1997; 32: 920-924. doi:10.3109/00365529709011203.
  • 23. Greetham HL, Giard C., Hutson RA, Collins MD, Gibson GR. Bacteriology of the Labrador dog gut: a cultural and genotypic approach. Journal of Applied Microbiology 2002; 93: 640-646. doi:10.1046/j.1365-2672.2002.01724.x
  • 24. Denev SA, Suzukı I, Kımoto, H. Role of Lactobacilli in human and animal health. Nihon Chikusan Gakkaiho 2000; 71 (6): 549-562. doi:10.2508/chikusan.71.549
  • 25. Jochum L, Stecher B. Label or concept – what is a pathobiont? Trends in Microbiology. Cell 2020; 28: 789-792. doi:10.1016/j. tim.2020.04.011
  • 26. Franz CMAP, Huch M, Abriouel H, Holzapfel W, Gálvez A. Enterococci as probiotics and their implications in food safety. International Journal of Food Microbiology 2011; 151 (2): 125- 140. doi:10.1016/j.ijfoodmicro.2011.08.014.
  • 27. Camilo E, Zimmerman J, Mason JB, Golner B, Russell R et al. Folate synthesized by bacteria in the human upper small intestine is assimilated by the host. Gastroenterology 1996; 110: 991-998. doi: 10.1053/gast.1996. doi:10.1053/gast.1996. v110.pm8613033.
  • 28. Patanwala I, King MJ, Barrett DA, Rose J, Jackson R et al. Folic acid handling by the human gut: implications for food fortification and supplementation. The American Journal of Clinical Nutrition 2014; 100 (2): 593-599. doi:10.3945/ ajcn.113.080507
  • 29. Schalm OW, Jain NC, Carrol EJ. Veterinary Haematology. 3rd ed. Philadelphia: Lea and Febiger Publication, 1975, p. 807- 807.
  • 30. Ben Dhia O, Lasram MM, Harizi N, Doghri R, Charfi L et al. Kefir milk alleviates benzene-induced immunotoxicity and hematotoxicity in rats. Environmental Science and Pollution Research 2021; 28 (31): 42230-42242. doi:10.1007/s11356-021- 13569-3
  • 31. Rosa DD. Evaluation of kefir consumption on metabolic, immune, hormonal and histological parameters in spontaneously hypertensive rats with induced metabolic syndrome. PhD Thesis, Minas Gerais - Brasil, 2014.
  • 32. Toghyani M, Mosavi SK, Modaresi M, Landy N. Evaluation of kefir as a potential probiotic on growth performance, serum biochemistry and immune responses in broiler chicks. Animal Nutrition 2015; 1 (4): 305-309. doi:10.1016/j.aninu.2015.11.010
  • 33. Ghasemi-Sadabadi M, Ebrahimnezhad Y, Shaddel-Tili A, Bannapour-Ghaffari V, Kozehgari H et al. The effects of fermented milk products (kefir and yogurt) and probiotic on performance, carcass characteristics, blood parameters, and gut microbial population in broiler chickens. Archives Animal Breeding 2019; 62 (1): 361-374. doi:10.5194/aab-62-361-2019
  • 34. Vahdatpour T, Babazadeh D. The effects of kefir rich in probiotic administration on serum enzymes and performance in male Japanese quails. The Journal of Animal & Plant Sciences 2016; 26 (1): 34-39.
  • 35. Mert H, Yılmaz H, Irak K, Yıldırım S, Mert N. Investigation of the protective effect of kefir against isoproterenol induced myocardial infarction in rats. Korean Journal for Food Science of Animal Resources 2018; 38: 259-272. doi:10.5851/ kosfa.2018.38.2.259.
  • 36. Ozturk B, Guven A. Effect of kefir on the gene expression profiles of GSTM1 and GSTT1 with antioxidant defense in the environment of detoxification of aflatoxin an in vivo study. International Journal of Basic and Clinical Studies (IJBCS) 2014; 3 (1): 9-24.
  • 37. Al-Shawi SG, Dang DS, Yousif AY, Al-Younis ZK, Najm TA et al. The potential use of probiotics to improve animal health, efficiency, and meat quality: a review. Agriculture 2020; 10 (10): 452. doi:10.3390/agriculture10100452
  • 38. Rehman A, Arif M, Sajjad N, Al-Ghadi MQ, Alagawany M et al. Dietary effect of probiotics and prebiotics on broiler performance, carcass, and immunity. Poultry Science 2020; 99 (12): 6946-6953.
  • 39. Sandøe P, Palmer C, Corr S, Astrup A, Bjørnvad CR. Canine and feline obesity: a One Health perspective. Veterinary Record, 2014; 175 (24): 610-616.
  • 40. Fusi E, Rizzi R, Polli M, Cannas S, Giardini A et al. Effects of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation on healthy cat performance. Veterinary Record Open 2019; 6 (1): e000368 doi:10.1136/vetreco-2019-000368.
  • 41. Rolfe VE, Adams CA, Butterwick RF, Batt RM. Relationship between faecal character and intestinal transit time in normal dogs and dietsensitive dogs. Journal of Small Animal Practice 2002; 43: 290-294. doi:10.1111/j.1748-5827.2002.tb00075.x
  • 42. Hill RC, Burrows CF, Ellison GW, Finke MD, Huntington JL et al. Water content of faeces is higher in the afternoon than in the morning in morning-fed dogs fed diets containing texturised vegetable protein from soya. British Journal of Nutrition 2011; 106: 202-205. doi:10.1016/j.psj.2020.09.043
  • 43. Marelli SP, Fusi E, Giardini A, Martino PA, Polli M et al. Effects of probiotic Lactobacillus acidophilus D2/CSL (CECT 4529) on the nutritional and health status of boxer dogs. Veterinary Record, 2020; 187 (4): e28-e28. doi:10.1136/vr.105434.
  • 44. Sevencan NO, Isler M, Kapucuoglu FN, et al. Dose dependent effects of kefir on colitis induced by trinitrobenzene sulfonic acid in rats. Food Science & Nutrition 2019; 7 (9): 3110-3118. doi:10.1002/fsn3.1174.
  • 45. El-Bashiti TA, Zabut BM, Al- Krenawie AI. Effect of kefir intake on growth performance and some biochemical profiles among domestic rabbits. World Journal of Pharmacy and Pharmaceutical Sciences 2017; 6 (3): 223-240. doi:10.20959/ wjpps20173-8801
Turkish Journal of Veterinary and Animal Sciences-Cover
  • ISSN: 1300-0128
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Comparison of M, MM and LTS estimators in linear regression in the presence of outlier

Cem TIRINK, Hasan ÖNDER

Genetic variation at the OLR1, ANXA9, MYF5, LTF, IGF1, LGB, CSN3, PIT1, MBL1, CACNA2D1, and ABCG2 loci in Turkish Grey Steppe, Anatolian Black, and East Anatolian Red cattle

Sena ARDIÇLI, Özden ÇOBANOĞLU

Do horses learn how to reach for feed depending on the time of day?

Agnieszka ZIEMIAŃSKA, Maciej TROJAN, Konrad BAZEWICZ, Justyna WOJTAŚ, Tomasz PRÓCHNIAK, Iwona ROZEMPOLSKA-RUCIŃSKA

Effects of rumen-protected methionine and lysine on milk yield and milk composition in Holstein dairy cows consuming a corn grain and canola meal-based diet

Emrah GÜLGÜN, Ekin SUCU

Determining the genetic diversity of silkworm lines in Turkey

Ezgi ODABAŞ, İbrahim CEMAL

Forage turnip (Brassica rapa) harvested in different phases of vegetative stage and ensiled with the additives of molasses and barley and the effects of additives on silage quality, in vitro digestibility, and energy content

Serhat YILDIZ, Çağrı KALE, Suphi DENİZ, Fatma ÖZKAN

Monensin induces apoptosis in the liver tissue and primary hepatocytes of chicks

Muhammet Yasin TEKELİ, Murat KANBUR

A biological perspective on interpreting interaction effect

Serdar GENÇ, Mehmet MENDEŞ

Topical formulations based on polyhexamethylene hydrochloride guanidine for surgical field antisepsis

Lucas de Freitas PEREIRA, Fernanda Gosuen Gonçalves DIAS, Renato Luis Tame PARREIRA, Rodrigo Cássio Sola VENEZIANI, Maria Anita Lemos Vasconcelos AMBRÓSIO, Vinicíus Thomaz da Silva ALMEIDA, Renata Alves de BARROS, Sérgio Ricardo AMBRÓSIO, Luis Gustavo Gosuen Gonçalves DIAS

The effects of biological and health characteristics of dogs on intraindividual variability of blood parameters

Marko CINCOVIĆ, Sandra NIKOLIĆ, Branislava BELIĆ, Nikolina NOVAKOV, Nada PLAVŠA, Sara SAVIĆ