Comparing microbiological profiles, bioactivities, and physicochemical and sensory properties of donkey milk kefir and cow milk kefir

Comparing microbiological profiles, bioactivities, and physicochemical and sensory properties of donkey milk kefir and cow milk kefir

Consumption of fermented milk products especially kefir is accelerated in the population due to their high nutritional value and other health benefits. These health benefits are rooted in the composition of source material and flora of kefir grains. Therefore, the utilization of different kinds of milk as source material in kefir production directly affects the properties of kefir. In this study, changes in the physicochemical properties, microbiological profiles, antibacterial effects, antioxidant activities, sensory evaluation, and total phenolic and total flavonoid contents of kefirs obtained from donkey milk (DM) and cow milk (CM) were compared. It was found that donkey milk kefir (DMK) and cow milk kefir (CMK) have different physicochemical properties and microbiological profile. DMK showed antibacterial activity against seven bacterial strain used in this study. The antioxidant activity was increased with fermentation in both kefir samples. The total phenolic content of DMK was higher than that of CMK whereas the total flavonoid content of CMK was higher than that of DMK. Sensory analysis showed that participants prefer CMK to DMK. It can be concluded that with its higher flavonoid content and antibacterial activity, DMK might be an alternative nutrient for consumers.

___

  • 1. Özdemir D, Kahyaoğlu DT. Identification of microbiological, physical, and chemical quality of milk from milk collection centers in Kastamonu Province. Turkish Journal of Veterinary & Animal Sciences 2020; 44: 118-130. doi: 10.3906/vet-1908- 86
  • 2. Jirillo F, Martemucci G, D’Alessandro AG, Panaro MA, Cianciulli A et al. Ability of goat milk to modulate healthy human peripheral blood lymphomonocyte and polymorphonuclear cell function: In vitro effects and clinical implications. Current Pharmaceutical Design 2010; 16 (7): 870-876. doi: 10.2174/138161210790883534
  • 3. Mottola A, Alberghini L, Giaccone V, Marchetti P, Tantillo G et al. Microbiological safety and quality of Italian donkey milk. Journal of Food Safety 2018; 38 (3): e12444. doi:10.1111/ jfs.12444
  • 4. Aspri M, Leni G, Galaverna G, Papademas P. Bioactive properties of fermented donkey milk, before and after in vitro simulated gastrointestinal digestion. Food Chemistry 2018; 268: 476-484. doi: 10.1016/j.foodchem.2018.06.119.
  • 5. Guo HY, Pang K, Zhang XY, Zhao L, Chen SW et al. Composition, physiochemical properties, nitrogen fraction distribution, and amino acid profile of donkey milk. Journal of Dairy Science 2007; 90 (4): 1635-1643. doi: 10.3168/jds.2006- 600
  • 6. Cunsolo V, Saletti R, Muccilli V, Gallina S, Di Francesco A et al. Proteins and bioactive peptides from donkey milk: The molecular basis for its reduced allergenic properties. Food Research International 2017; 99: 41-57. doi: 10.1016/j. foodres.2017.07.002.
  • 7. John SM, Deeseenthum S. Properties and benefits of kefir-A review. Songklanakarin Journal of Science and Technology 2015; 37 (3): 275-282.
  • 8. Irigoyen A, Arana I, Castiella M, Torre P, Ibanez FC. Microbiological, physicochemical, and sensory characteristics of kefir during storage. Food Chemistry 2005; 90 (4): 613-620. doi: 10.1016/j.foodchem.2004.04.021
  • 9. Rodrigues KL, Caputo LRG, Carvalho JCT, Evangelista J, Schneedorf JM. Antimicrobial and healing activity of kefir and kefiran extract. International Journal of Antimicrobial Agents 2005; 25 (5): 404-408. doi: 10.1016/j.ijantimicag.2004.09.020
  • 10. Kato I. Antitumour activity of lactic acid bacteria. In: Fuller R., Perdigon G. (editors). Probiotics 3. Springer, Dordrecht 2009. p. 115-138. doi: 10.1007/978-94-017-2768-6_4
  • 11. Otles S, Cagindi O. Kefir: A probiotic dairy-composition, nutritional and therapeutic aspects. Pakistan Journal of Nutrition 2003; 2 (2): 54-59.
  • 12. Fiorda FA, Pereira GVD, Thomaz-Soccol V, Rakshit SK, Pagnoncelli MGB et al. Microbiological, biochemical, and functional aspects of sugary kefir fermentation - A review. Food Microbiology 2017; 66: 86-95. doi: 10.1016/j.fm.2017.04.004
  • 13. Bensmira M, Jiang B. Effect of some operating variables on the microstructure and physical properties of a novel Kefir formulation. Journal of Food Engineering 2012; 108 (4): 579- 584. doi: 10.1016/j.jfoodeng.2011.07.025
  • 14. Shi X, Chen H, Li Y, Huang J, He Y. Effects of kefir grains on fermentation and bioactivity of goat milk. Acta Universitatis Cibiniensis Series E: Food Technology 2018; 22 (1): 43-50. doi: 10.2478/aucft-2018-0005
  • 15. TSE. Raw Milk Standard-TS1018. Ankara, Turkey: Institute of Turkish Standards; 2002.
  • 16. ISO. Milk—Determination of fat content. Geneva, Switzerland: International Standards Organization; 2008.
  • 17. Kurt A, Çakmakçı S, Çağlar A. Süt ve Mamulleri Muayene ve Analiz Metotları Rehberi. Erzurum, Türkiye: Atatürk Üniversitesi Yayınları 1993 (in Turkish).
  • 18. Halkman KA. Gıda Mikrobiyolojisi ve Uygulamaları. 2. baskı. Ankara, Türkiye 2000 (in Turkish).
  • 19. Kim DH, Jeong D, Kim H, Kang IB, Chon JW et al. Antimicrobial activity of kefir against various food pathogens and spoilage bacteria. Korean Journal for Food Science of Animal Resources 2016; 36 (6): 787-790. doi: 10.5851/kosfa.2016.36.6.787
  • 20. NCCLS. Performance standards for antimicrobial disk susceptibility tests. Approved standard M2- A6. Wayne, PA, USA: Clinical Laboratory Standards Institute, National Committee for Clinical Laboratory Standards 1997.
  • 21. von Gadow A, Joubert E, Hansmann CF. Comparison of the antioxidant activity of rooibos tea (Aspalathus linearis) with green, oolong and black tea. Food Chemistry 1997; 60 (1): 73- 77.
  • 22. Skerget M, Kotnik P, Hadolin M, Hras HR, Simonic M et al. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry 2005; 89 (2): 191-198. doi: 0.1016/j.foodchem.2004.02.025
  • 23. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 1965; 16 (3): 144-158.
  • 24. Chang Q, Zuo Z, Chow MSS, Ho WKK. Effect of storage temperature on phenolics stability in hawthorn (Crataegus pinnatifida var. major) fruits and a hawthorn drink. Food Chemistry 2006; 98 (3): 426-430. doi: 10.1016/j. foodchem.2005.06.015
  • 25. IBM. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: International Business Machines Corporation; 2013.
  • 26. El-Hatmi H, Jrad Z, Salhi I, Aguibi A, Nadri A et al. Comparison of composition and whey protein fractions of human, camel, donkey, goat and cow milk. Mljekarstvo 2015; 65 (3): 159-167. doi: 10.15567/mljekarstvo.2015.0302
  • 27. Kavas G. Kefirs manufactured from camel (Camelus dramedarius) milk and cow milk: comparison of some chemical and microbial properties. Italian Journal of Food Science 2015; 27 (3): 357-365. doi: 10.14674/1120-1770/ijfs.v279
  • 28. Hecer C, Ulusoy B, Kaynarca D. Effect of different fermentation conditions on composition of kefir microbiota. International Food Research Journal 2019; 26 (2): 401-409.
  • 29. Salimei E, Fantuz F, Coppola R, Chiofalo B, Polidori P et al. Composition and characteristics of ass’s milk. Animal Research 2004; 53 (1): 67-78. doi: 10.1051/animres:2003049
  • 30. Martini M, Altomonte I, Salari F. Amiata donkeys: fat globule characteristics, milk gross composition and fatty acids. Italian Journal of Animal Science 2014; 13 (1). doi: 10.4081/ ijas.2014.3118
  • 31. Valle E, Pozzo L, Giribaldi M, Bergero D, Gennero MS et al. Effect of farming system on donkey milk composition. Journal of the Science of Food and Agriculture 2018; 98 (7): 2801-2808. doi: 10.1002/jsfa.8777
  • 32. Perna A, Simonetti A, Gambacorta E. Phenolic content and antioxidant activity of donkey milk kefir fortified with sulla honey and rosemary essential oil during refrigerated storage. International Journal of Dairy Technology 2019; 72 (1): 74-81. doi: 10.1111/1471-0307.12561
  • 33. Chiavari C, Coloretti F, Nanni M, Sorrentino E, Grazia L. Use of donkey’s milk for a fermented beverage with lactobacilli. Le Lait. 2005; 85 (6): 481-490. doi: 10.1051/lait:2005031
  • 34. Cevikbas A, Yemni E, Ezzedenn FW, Yardimici T, Cevikbas U et al. Antitumoral Antibacterial and Antifungal Activities of Kefir and Kefir Grain. Phytotherapy Research 1994; 8 (2): 78- 82. doi: 10.1002/ptr.2650080205
  • 35. Kakisu EJ, Abraham AG, Perez PF, De Antoni GL. Inhibition of Bacillus cereus in milk fermented with kefir grains. Journal of Food Protection 2007; 70 (11): 2613-2616. doi: 10.4315/0362- 028X-70.11.2613
  • 36. Beghelli D, Lupidi G, Damiano S, Cavallucci C, Bistoni O et al. Rapid assay to evaluate the total antioxidant capacity in donkey milk and in more common animal milk for human consumption. Austin Food Science. 2016; 1 (1): 1003.
  • 37. Simos Y, Metsios A, Verginadis I, D’Alessandro AG, Loiudice P et al. Antioxidant and anti-platelet properties of milk from goat, donkey and cow: An in vitro, ex vivo and in vivo study. International Dairy Journal 2011; 21 (11): 901-906. doi:10.1016/j.idairyj.2011.05.007
  • 38. Oner Z, Sanlidere-Aloglu H, Dedebas T. Determination of antioxidant capacity in milk from various animals and humans. Milchwissenschaft-Milk Science International 2011; 66 (2): 133-135.
  • 39. Irkin R, Dogan S, Degirmencioglu N, Diken ME, Guldas M. Phenolic Content, Antioxidant Activities and Stimulatory Roles of Citrus Fruits on Some Lactic Acid Bacteria. Archives of Biological Sciences 2015; 67 (4): 1313-1321. doi: 10.2298/ ABS140909108I
  • 40. Ebner J, Arslan AA, Fedorova M, Hoffmann R, Kucukcetin A et al. Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains. Journal of Proteomics. 2015; 117: 41-57. doi:10.1016/j.jprot.2015.01.005
  • 41. Du X, Myracle AD. Fermentation alters the bioaccessible phenolic compounds and increases the alpha-glucosidase inhibitory effects of aronia juice in a dairy matrix following in vitro digestion. Food and Function 2018; 9 (5): 2998-3007. doi: 10.1039/C8FO00250A
  • 42. Belgheisi S. Composition change of kombucha during fermentation. In: 21th National Conference on Food Science and Technology; Shiraz, Iran; 2013.
  • 43. Yilmaz-Ersan L, Ozcan T, Akpinar-Bayizit A, Sahin S. The antioxidative capacity of kefir produced from goat milk. International Journal of Chemical Engineering and Applications 2016; 7 (1): 22. doi: 10.7763/IJCEA.2016.V7.535
  • 44. De Feo V, Quaranta E, Fedele V, Claps S, Rubino R et al. Flavonoids and terpenoids in goat milk in relation to forage intake. Italian Journal of Food Science 2006; 18 (1): 85-92.
  • 45. Wszolek M, Tamime AY, Muir DD, Barclay MNI. Properties of Kefir made in Scotland and Poland using bovine, caprine and ovine milk with different starter cultures. LWT-Food Science and Technology 2001; 34 (4): 251-261. doi: 10.1006/ fstl.2001.0773
  • 46. Cais-Sokolińska D, Danków R, Pikul J. Physicochemical and sensory characteristics of sheep kefir during storage. Acta Scientiarum Polonorum Technologia Alimentaria. 2008; 7 (2): 63-73.
Turkish Journal of Veterinary and Animal Sciences-Cover
  • ISSN: 1300-0128
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Surgical management of infectious and noninfectious melting corneal ulcers in cats

Aynur DEMİR, Gülşen SEVİM KARAGÖZOĞLU, Yusuf ALTUNDAĞ

Assessment of polymorphism on kappa-casein gene of Anatolian water buffalo breed using the PCR–RFLP method

Yusuf ÖZŞENSOY

Investigation of propolis in terms of hygienic quality, some pathogenic bacteria and Nosema spp

Hayrettin AKKAYA, Gülay Merve BAYRAKAL, Emek DÜMEN

Effects of activated charcoal and zeolite on serum lipopolysaccharides and some inflammatory biomarkers levels in experimentally induced subacute ruminal acidosis in lambs

Ali Abbas NIKVAND, Mohammad NOUR, Mohammad RAZI JALALI, Mohammad Reza TEIMORY AZADBAKHT

Genetic polymorphism of alpha S1-casein in Bulgarian sheep breeds and its effect on milk composition

Petya VELEVA, Deyana GENCHEVA, Darina PAMUKOVA, Nikolina NAYDENOVA

Evaluation of animal models for genetic analysis of growth performance in Landlly pigs

Nihar Ranjan SAHOO, Snehasmita PANDA, Pruthviraj DEVAMMA RAMACHANDRAPPA, Gyanendra Kumar GAUR, Sheikh Firdous AHMAD, Panch Kishore BHARTI

In vitro exposure to di-(2-ethylhexyl) phthalate (DEHP) stimulates spontaneous feline uterine contractions

Ruhi KABAKÇI, İbrahim Mert POLAT, Taha Burak ELİFOĞLU, Ebru YILDIRIM, Hasan Ceyhun MACUN

Determination of nutritional value of some quinoa varieties

Tugay AYAŞAN

Possible ensiling of pumpkin (Cucurbita pepo) residues

Mahmut KALİBER, Yusuf KONCA, Selma BÜYÜKKILIÇ BEYZİ, İsmail ÜLGER

An atypical localization of Bacillus anthracis in a cow’s milk and udder

Özgür ÇELEBİ, Fatih BÜYÜK, Mustafa Reha COŞKUN, Mitat ŞAHİN