Turkish reference ranges for the left fetal modified myocardial performance index

Background. This study aimed to assess fetal cardiac left ventricular function in healthy pregnant women by calculating the modified myocardial performance index (Mod-MPI) and to construct reference ranges for the Turkish population. Methods. One-hundred-two randomly selected healthy singleton pregnant women ranging between 25 and 39 gestational weeks were included in the study. Left fetal Mod-MPI was measured for each pregnant woman. Women with chronic systemic diseases or fetuses with chromosomal or structural abnormalities were excluded from the study. Mitral valve (MV) and aortic valve (AoV) clicks were used as landmarks to define the following time periods that were used to calculate the Mod-MPI: isovolumetric contraction time (ICT), isovolumetric relaxation time (IRT), and ejection time (ET). Results. The mean Mod-MPI was 0.42±0.10. The mean IRT, ICT, and ET were 43.5±10.2, 27.27±8.1, and 170.5±16.9, respectively. A significant correlation was found between Mod-MPI and gestational age, umbilical artery systolic/diastolic (UA S/D) ratio and the middle cerebral artery pulsatility index (MCA PI) values (r=0.199, p=0.047, r=-0.328, p=0.001, and r=-0.0349, p=0.001, respectively) Conclusions. The current study’s results will be a reference for future studies, especially studies investigating pathological conditions that impact fetal cardiac function

___

1. Tei C. New non-invasive index for combined systolic and diastolic ventricular function. J Cardiol 1995; 26: 135-136.

2. Hernandez-Andrade E, Lopez-Tenorio J, Figueroa- Diesel H, et al. A modified myocardial performance (Tei) index based on the use of valve clicks improves reproducibility of fetal left cardiac function assessment. Ultrasound Obstet Gynecol 2005; 26: 227-232. https://doi.org/10.1002/uog.1959

3. Kobayashi Y, Moneghetti KJ, Bouajila S, et al. Time based versus strain based myocardial performance indices in hypertrophic cardiomyopathy, the merging role of left atrial strain. Eur Heart J Cardiovasc Imaging 2019; 20: 334-342. https://doi. org/10.1093/ehjci/jey097

4. Duyuler S. Myocardial performance in elite athletes: the role of homocysteine, iron, and lipids. Med Sci Monit 2019; 25: 1194-1203. https://doi.org/10.12659/ MSM.913561

5. Crispi F, Hernandez-Andrade E, Pelsers MM, et al. Cardiac dysfunction and cell damage across clinical stages of severity in growth-restricted fetuses. Am J Obstet Gynecol 2008; 199: 254.e1-254.e8. https://doi. org/10.1016/j.ajog.2008.06.056

6. Henry A, Alphonse J, Tynan D, Welsh AW. Use of the fetal Myocardial Performance Index in assessment and management of the Small for Gestational Age fetus: a cohort and nested case-control study. Ultrasound Obstet Gynecol 2018; 51: 225-235. https:// doi.org/10.1002/uog.17476

7. Chawengsettakul S, Russameecharoen K, Wanitpongpan P. Fetal cardiac function measured by myocardial performance index of small-for- gestational age fetuses. J Obstet Gynaecol Res 2015; 41: 222-228. https://doi.org/10.1111/jog.12508

8. Bhorat IE, Bagratee JS, Pillay M, Reddy T. Determination of the myocardial performance index in deteriorating grades of intrauterine growth restriction and its link to adverse outcomes. Prenat Diagn 2015; 35: 266-273. https://doi.org/10.1002/ pd.4537

9. Raboisson MJ, Fouron JC, Lamoureux J, et al. Early intertwin differences in myocardial performance during the twin-to-twin transfusion syndrome. Circulation 2004; 110: 3043-3048. https://doi. org/10.1161/01.CIR.0000146896.20317.59

10. Van Mieghem T, Klaritsch P, Done E, et al. Assessment of fetal cardiac function before and after therapy for twin-to-twin transfusion syndrome. Am J Obstet Gynecol 2009; 200: 400.e1-400.e7. https://doi. org/10.1016/j.ajog.2009.01.051

11. Gapp-Born E, Sananes N, Guerra F, et al. Predictive value of cardiovascular parameters in stages 1 and 2 of twin-to-twin transfusion syndrome. Prenat Diagn 2014; 34: 908-914. https://doi.org/10.1002/pd.4393

12. Russell NE, Foley M, Kinsley BT, Firth RG, Coffey M, McAuliffe FM. Effect of pregestational diabetes mellitus on fetal cardiac function and structure. Am J Obstet Gynecol 2008; 199: 312.e1-312.e7. https://doi. org/10.1016/j.ajog.2008.07.016

13. Sanhal CY, Daglar HK, Kara O, Uygur D, Yucel A. Assessment of fetal myocardial performance index in women with pregestational and gestational diabetes mellitus. J Obstet Gynaecol Res 2017; 43: 65- 72. https://doi.org/10.1111/jog.13174

14. Bhorat I, Pillay M, Reddy T. Determination of the fetal myocardial performance index in women with gestational impaired glucose tolerance and to assess whether this parameter is a possible prognostic indicator of adverse fetal outcome. J Matern Fetal Neonatal Med 2018; 31: 2019-2026. https://doi.org/1 0.1080/14767058.2017.1334047

15. Hernandez-Andrade E, Figueroa-Diesel H, Kottman C, et al. Gestational-age-adjusted reference values for the modified myocardial performance index for evaluation of fetal left cardiac function. Ultrasound Obstet Gynecol 2007; 29: 321-325. https://doi. org/10.1002/uog.3947

16. International Society of Ultrasound in Obstetrics and Gynecology, Carvalho JS, Allan LD, et al. ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol 2013; 41: 348-359. https://doi. org/10.1002/uog.12403

17. Öcal DF, Yakut K, Öztürk FH, et al. Utility of the modified myocardial performance index in growth- restricted fetuses. Echocardiography 2019; 36: 1895- 1900. https://doi.org/10.1111/echo.14489

18. Kır M, Ünal M, Saylam GS, Karadas U, Sahin M. Ventriküler septal defektli çocuklarda sol ventrikül fonksiyonlarının miyokardiyal performans indeksi (Tei indeksi) kullanılarak değerlendirilmesi. Dokuz Eylül Üniversitesi Tıp Fakültesi Dergisi 2018; 22: 113-119.

19. Cruz-Martinez R, Figueras F, Bennasar M, et al. Normal reference ranges from 11 to 41 weeks’ gestation of fetal left modified myocardial performance index by conventional Doppler with the use of stringent criteria for delimitation of the time periods. Fetal Diagn Ther 2012; 32: 79-86. https://doi.org/10.1159/000330798

20. Clur SA, Oude Rengerink K, Mol BW, Ottenkamp J, Bilardo CM. Fetal cardiac function between 11 and 35 weeks’ gestation and nuchal translucency thickness. Ultrasound Obstet Gynecol 2011; 37: 48- 56. https://doi.org/10.1002/uog.8807

21. Friedman D, Buyon J, Kim M, Glickstein JS. Fetal cardiac funtion assessed by Doppler myocardial performance index (Tei index). Ultrasound Obstet Gynecol 2003; 21: 33-36. https://doi.org/10.1002/ uog.11

22. Van Mieghem T, Gucciardo L, Lewi P, et al. Validation of the fetal myocardial performance index in the second and third trimesters of gestation. Ultrasound Obstet Gynecol 2009; 33: 58-63. https:// doi.org/10.1002/uog.6238

23. MacDonald TM, Robinson AJ, Walker SP, Hui S. Prospective longitudinal assessment of the fetal left modified Myocardial Performance Index. J Matern Fetal Neonatal Med 2017; 32: 760-767. https://doi.org /10.1080/14767058.2017.1391777

24. Meriki N, Welsh AW. Development of Australian reference ranges for the left fetal modified myocardial performance index and the influence of caliper location on time interval measurement. Fetal Diagn Ther 2012; 32:87-95. https://doi. org/10.1159/000334133

25. Leung V, Avnet H, Henry A, Wang J, Redmond S, Welsh AW. Automation of the Fetal Right Myocardial Performance Index to Optimise Repeatability. Fetal Diagn Ther2018; 44: 28-35. https://doi. org/10.1159/000478928

26. Mielke G, Benda N. Cardiac output and central distribution of blood flow in the human fetus. Circulation 2001; 103: 1662-1668. https://doi. org/10.1161/01.CIR.103.12.1662

27. Rasanen J, Wood DC, Weiner S, Ludomirski A, Huhta JC. Role of the pulmonary circulation in the distribution of human fetal cardiac output during the second half of pregnancy. Circulation 1996; 94: 1068-1073. https://doi.org/10.1161/01.CIR.94.5.1068

28. Mahajan A, Henry A, Meriki N, et al. The (pulsed- wave) Doppler fetal myocardial performance index: technical challenges, clinical applications and future research. Fetal Diagn Ther 2015; 38: 1-13. https://doi. org/10.1159/000363181

29. Paytoncu S. Conventional Doppler myocardial performance index, tricuspid and mitral annular plane systolic excursions in the assessment of fetal heart functions. Perinatal Journal 2018; 26: 117-123. https://doi.org/10.2399/prn.18.0263004

30. Cruz-Martinez R, Figueras F, Jaramillo JJ, et al. Learning curve for Doppler measurement of fetal modified myocardial performance index. Ultrasound Obstet Gynecol 2011; 37: 158-162. https:// doi.org/10.1002/uog.7765

31. Maheshwari P, Henry A, Welsh AW. The fetal modified myocardial performance index: is automation the future? Biomed Res Int 2015; 2015: 215910. https://doi.org/10.1155/2015/215910

32. Kim SM, Ye SY. Evaluation of the fetal left ventricular myocardial performance index (MPI) by using an automated measurement of doppler signals in normal pregnancies. Diagnostics (Basel) 2021; 11: 358. https://doi.org/10.3390/diagnostics11020358
Turkish Journal of Pediatrics-Cover
  • ISSN: 0041-4301
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1958
  • Yayıncı: Hacettepe Üniversitesi Çocuk Sağlığı Enstitüsü Müdürlüğü
Sayıdaki Diğer Makaleler

Evaluation of medication errors in pediatric patients using antibiotics

Nesligül ÖZDEMİR, Emre KARA, Ayşe BÜYÜKÇAM, Kübra AYKAÇ, Ayçe ÇELİKER, Kutay DEMİRKAN, Ateş KARA

Mitochondrial trifunctional protein deficiency as a polyneuropathy etiology in childhood

Özlem Ünal UZUN, Büşra ÇAVDARLI, Selen KARALÖK

Investigation of immunity against Bordetella pertussis in pregnant women and an overview of the vaccination schedule in Turkey

Serdar GÜL, Cemile SÖNMEZ, Gökçe AYVAZ, Selçuk KILIÇ

Allergic reactions during childhood vaccination and management

Elif Soyak AYTEKİN, Bülent E. ŞEKEREL, Ümit M. ŞAHİNER

Short and long term side effect of colistin treatment in preterm infants

Sadık YURTTUTAN, Burcu Cantay ATALAY

Primary spinal multifocal intradural-extramedullary Ewing sarcoma in children: presentation of a case and review of the literature

Eren MÜNGEN, Nilgün KURUCU, Tezer KUTLUK, Kader K. OĞUZ, Figen SÖYLEMEZOĞLU, Bilgehan YALÇIN

Predictive factors of high-flow nasal cannula oxygen therapy failure in children with respiratory distress treated in a Pediatric Emergency Department

Orkun AYDIN, Elif Arslanoğlu AYDIN, Ahmet Zİya BİRBİLEN, Özlem TEKŞAM

Tuberculosis risk in the biologic era: tuberculin skin test conversion rates in children with rheumatologic diseases

Canan ÖZLÜ, Serkan TÜRKUÇAR, Hatice KARAOĞLU ASRAK, Hatice Adıgüzel DÜNDAR, Şevket Erbil ÜNSAL, Nurşen BELET

A case of pediatric psoriasis achieving remission after allogenic bone marrow transplantation

Dilara GÜLER, Gülhan GÜREL, Gülsüm Şeyma YALÇIN, İbrahim EKER, İrem Nur DURUSU, Çiğdem ÖZDEMİR, Özge VURAL

Clinical follow-up of children with high vitamin B12 values: should we worry?

Davut ALBAYRAK, Canan ALBAYRAK