Investigation of the expression levels of CDH1, FHIT, PTEN, and TTPAL genes in colorectal tumors

Investigation of the expression levels of CDH1, FHIT, PTEN, and TTPAL genes in colorectal tumors

Background/aim: The main aim of the study is to assess expression levels of CDH1, FHIT, PTEN, and TTPAL genes in tumors and peripheral bloods of colorectal cancer patients in staged I-IV. Materials and methods: Gene expression analysis of related genes were performed for tumor tissues and peripheral blood samples of 51 colorectal cancer patients and colon tissues and blood samples of 5 healthy individuals. The real-time-PCR reaction method was used for the analysis. Results: Alteration of mRNA levels of related genes in tumor tissues of colorectal cancer cases was determined compared to control tissues. GAPDH and TBP were used for the normalization. While the mRNA levels of CDH1 decreased, the mRNA level of the FHIT and TTPAL genes increased in the tumor tissues. There was no PTEN gene expression difference in tumor tissues (total). The mRNA levels of the CDH1 and PTEN genes were increased while the mRNA levels of FHIT and TTPAL genes decreased in the blood (total). The mRNA levels of the CDH1 gene decreased at each stage (I-IV) in the tumor tissues and increased at each stage (I-IV) in the blood. The PTEN gene mRNA levels at each stage were controversial. The mRNA levels of the FHIT gene increased at stage I-II-III, decreased at stage IV in the tissues and decreased at each stage (I-IV) in the blood. The mRNA levels of TTPAL gene increased at each stage (I-IV) in the tissues and decreased at each stage (I-IV) in the blood. Conclusion: Although related expression levels in tissue did not correlate with its expression in blood, consistent with previous studies FHIT and TTPAL genes upregulation and CDH1 downregulation, in especially tumoral tissues, may serve as predictive determinants for the patients with colorectal cancer.

___

  • 1. Binefa G, Rodriguez-Moranta F, Teule A, Medina-Hayas M. Colorectal cancer: from prevention to personalized medicine. World Journal of Gastroenterology 2014; 20 (22): 6786-6808. doi: 10.3748/wjg.v20.i22.6786
  • 2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J et al. A Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians 2015; 65 (2): 87-108. doi: 10.3322/caac.21262
  • 3. Wei J, Ge X, Tang Y, Qian Y, Lu W et al. An AutophagyRelated Long Noncoding RNA Signature Contributes to Poor Prognosis in Colorectal Cancer. Journal of Oncology 2020; October 21; 2020: 4728947. doi: 10.1155/2020/4728947
  • 4. Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annual Review of Pathology 2018; 24 (13): 395- 412. doi: 10.1146/annurev-pathol-020117-043854
  • 5. Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Science Signalling 2014; 7 (344): re8. doi: 10.1126/scisignal.2005189
  • 6. Song Y, Ye M, Zhou J, Wang Z, Zhu X. Targeting E-cadherin expression with small molecules for digestive cancer treatment. American Journal of Translational Research 2019; 11 (7): 3932- 3944
  • 7. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 1991; 251: 1451-5. doi: 10.1126/science.2006419
  • 8. Gall TM, Frampton AE. Gene of the month: E-cadherin (CDH1). Journal of Clinical Pathology 2013; 66: 928-32. doi: 10.1136/jclinpath-2013-201768
  • 9. van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cellular and Molecular Life Sciences 2008; 65: 3756-88. doi: 10.1007/s00018-008-8281-1
  • 10. Efstathiou JA, Liu D, Wheeler JM, Kim HC, Beck NE et al. Mutated epithelial cadherin is associated with increased tumorigenicity and loss of adhesion and of responsiveness to the motogenic trefoil factor 2 in colon carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America 1999; 96 (5): 2316-2321. doi: 10.1073/ pnas.96.5.2316
  • 11. Braungart E, Schumacher C, Hartmann E, Nekarda H, Becker KF et al. Functional loss of E-cadherin and cadherin-11 alleles on chromosome 16q22 in colonic cancer. The Journal of Pathology 1999; 187: 530-34. doi: 10.1002/(SICI)1096- 9896(199904)187:5<530::AID-PATH293>3.0.CO;2-C
  • 12. Borghi N, Sorokina M, Shcherbakova OG, Weis WI, Pruitt BL et al. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proceedings of the National Academy of Sciences of the United States of America 2012; 109 (31): 12568- 12573. doi: 10.1073/pnas.1204390109
  • 13. White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology 2012; 142 (42): 219-232. doi: 10.1053/j.gastro.2011.12.001
  • 14. Croce CM, Sozzi G, Huebner K. Role of FHIT in human cancer. Journal of Clinical Oncology 1999;17(5): 1618–1624.
  • 15. Salmena L, Carracedo A, Pandolfi PP. Tenets of PTEN tumor suppression. Cell 2008; 133 (3): 403-14. doi: 10.1016/j. cell.2008.04.013
  • 16. Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. Annual Review of Pathology 2009(4):127-150. doi: 10.1146/annurev.pathol.4.110807.092311
  • 17. Perren A, Komminoth P, Saremaslani P, Matter C, Feurer S et al. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. The American Journal of Pathology 2000; 157 (4): 1097-1103. doi: 10.1016/S0002-9440(10)64624-X
  • 18. Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F et al. The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 2008; 455 (7214): 813-710. doi: 10.1038/nature07290
  • 19. Tuupanen S, Hanninen UA, Kondelin J, von Nandelstadh P, Cajuso T et al. Identification of 33 candidate oncogenes by screening for base-specific mutations. British Journal of Cancer 2014; 111 (8): 1657–1662. doi: 10.1038/bjc.2014.429
  • 20. Wen X, Wu Y, Awadasseid A, Tanaka Y, Zhang W. New Advances in Canonical Wnt/β-Catenin Signaling in Cancer. Cancer Management and Research 2020 12: 6987-6998. doi: 10.2147/CMAR.S258645
  • 21. Gou H, Liang JQ, Zhang L, Chen H, Zhang Y, Li R et al. TTPAL promotes colorectal tumorigenesis by stabilizing TRIP6 to activate Wnt/β-catenin signaling. Cancer Research 2019; 79 (13): 3332–3346. doi: 10.1158/0008-5472.CAN-18-2986
  • 22. Söylemez Z, Arıkan ES, Solak M, Arıkan Y, Tokyol Ç et al. Investigation of the expression levels of CPEB4, APC, TRIP13, EIF2S3, EIF4A1, IFNg, PIK3CA and CTNNB1 genes in different stage colorectal tumors. Turkish Journal of Medical Science 2021 30; 51 (2): 661-674. doi: 10.3906/sag-2010-18
  • 23. Pfaffl MW, Horgan GW, Dempfle L. Relative Expression Software Tool (RESTc) for group wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research 2002; 30 (9): e36. doi: 10.1093/ nar/30.9.e36
  • 24. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N et al. Emerging landscape of oncogenic signatures across human cancers. National Genetics 2013; 45(10): 1127-1133. doi: 10.1038/ng.2762
  • 25. Fehrmann RSN, Jansen RC, Veldink JH, Westra HJ, Arends D et al. Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genetics 2011; 7 (8): e1002197. doi: 10.1371/journal.pgen.1002197.g001
  • 26. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 2007; 315 (5813): 848- 853. doi: 10.1126/science.1136678
  • 27. Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. National Genetics 2013; 45: 1238-1243. doi: 10.1038/ng.2756
  • 28. Richards FM, McKee SA, Rajpar MH, Cole TRP, Evans DG et al. Germline E-cadherin gene (CDH1) mutations predispose to familial gastric cancer and colorectal cancer. Human Molecular Genetics 1999; 8 (4): 607-610. doi: 10.1093/hmg/8.4.607
  • 29. Pena-Couso L, Perea J, Melo S, Mercadillo F, Figueiredo J et al. Clinical and functional characterization of the CDH1 germline variant c.1679C>G in three unrelated families with hereditary diffuse gastric cancer. European Journal of Human Genetics 2018; 26 (9): 1348-1353. doi: 10.1038/s41431-018-0173-8
  • 30. Aitchison A, Hakkaart C, Whitehead M, Khan S, Siddique S et al. CDH1 gene mutation in early-onset, colorectal signet-ring cell carcinoma. Pathology, Research and Practice 2020; 216 (5):152912. doi: 10.1016/j.prp.2020.152912
  • 31. Kim SA, Inamura K, Yamauchi M, Nishihara R, Mima K et al. Loss of CDH1 (E-cadherin) expression is associated with infiltrative tumour growth and lymph node metastasis. British Journal of Cancer 2016; 114 (2): 199-206. doi:10.1038/ bjc.2015.347
  • 32. Christou N, Perraud A, Blondy S, Jauberteau MO, Battu S et al. E-cadherin: A Potential Biomarker of Colorectal Cancer Prognosis. Oncology Letters 2017; 13 (6): 4571-4576. doi: 10.3892/ol.2017.6063
  • 33. Michailidi C, Theocharis S, Tsourouflis G, Pletsa V, Kouraklis G et al. Expression and promoter methylation status of hMLH1, MGMT, APC, and CDH1 genes in patients with colon adenocarcinoma. Experimental Biology and Medicine (Maywood, N.J.) 2015; 240 (12): 1599-1605. doi: 10.1177/1535370215583800
  • 34. Zheng L, Zhan Y, Lu J, Hu J, Kong D. A prognostic predictive model constituted with gene mutations of APC, BRCA2, CDH1, SMO, and TSC2 in colorectal cancer. Annals of Translational Medicine 2021; 9 (8): 680. doi: 10.21037/atm-21-1010
  • 35. Yazdani Y, Farazmandfar T, Azadeh H, Zekavatian Z. The prognostic effect of PTEN expression status in colorectal cancer development and evaluation of factors affecting it: miR21 and promoter methylation. Journal of Biomedical Science 2016; 19: 23-9. doi: 10.1186/s12929-016-0228-5
  • 36. Colakoglu T, Yildirim S, Kayaselcuk F, Nursal TZ, Ezer A et al. Clinicopathological significance of PTEN loss and the phosphoinositide 3-kinase/Akt pathway in sporadic colorectal neoplasms: Is PTEN loss predictor of local recurrence? American Journal of Surgery 2008; 195 (6): 719-725. doi: 10.1016/j.amjsurg.2007.05.061
  • 37. Hsu CP, Kao TY, Chang WL, Nieh S, Wang HL et al. Clinical significance of tumor suppressor PTEN in colorectal carcinoma. European Journal of Surgical Oncology 2011; 37 (2): 140-147. doi: 10.1016/j.ejso.2010.12.003
  • 38. Waniczek D, Śnietura M, Młynarczyk-Liszka J, Pigłowski W, Kopeć A et al. PTEN expression profiles in colorectal adenocarcinoma and its precancerous lesions. Polish Journal of Pathology 2013; 64 (1): 15-20. doi: 10.5114/pjp.2013.34598
  • 39. Sun Y, Tian H, Wang L. Effects of PTEN on the proliferation and apoptosis of colorectal cancer cells via the phosphoinositol-3- kinase/Akt pathway. Oncology Reports 2015; 33 (4): 1828- 1836. doi: 10.3892/or.2015.3804
  • 40. Molinari F, Frattini M. Functions and Regulation of the PTEN Gene in Colorectal Cancer. Frontiers in Oncology 2014; 16(3): 326. doi: 10.3389/fonc.2013.00326.
  • 41. Hao XP, Willis JE, Pretlow TG, Rao JS, MacLennan GT et al. Loss of fragile histidine triad expression in colorectal carcinomas and premalignant lesions. Cancer Research 2000; 60 (1): 18-21.
  • 42. Cao J, Li W, Xie J, Du H, Tang W et al. Downregulation of FHIT inhibits apoptosis of colorectal cancer: mechanism and clinical implication. Surgical Oncology 2006; 15 (4): 223-233. doi: 10.1016/j.suronc.2007.01.006
  • 43. Wierzbicki PM, Adrych K, Kartanowicz D, Dobrowolski S, Stanislawowski M et al. Fragile histidine triad (FHIT) gene is overexpressed in colorectal cancer. Journal of Physiology and Pharmacology 2009; 60 (4): 63-70.
  • 44. Yasugi A, Yashima K, Hara A, Koda M et al. Fhit, Mlh1, p53 and phenotypic expression in the early stage of colorectal neoplasm. Oncology Reports 2008; 19 (1): 41-47.
  • 45. Thiagalingam S, Lisitsyn NA, Hamaguchi M, Wigler MH, Willson JK et al. Evaluation of the FHIT gene in colorectal cancers. Cancer Research 1996; 56 (13): 2936-2939.
  • 46. Kapitanovic S, Cacev T, Loncar B, Catela Ivkovic T, Krizanac S et al. Reduced FHIT expression is associated with tumor progression in sporadic colon adenocarcinoma. Experimental and Molecular Pathology 2014; 96(1): 92-97. doi:10.1016/j. yexmp.2013.12.005
  • 47. Liu W, Gou H, Wang X, Li X, Hu X et al. TTPAL promotes gastric tumorigenesis by directly targeting NNMT to activate PI3K/AKT signaling. Oncogene 2021; 40(49): 6666-6679. doi:10.1038/s41388-021-01838-x
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

A high-fat and high-fructose diet lowers the cecal digesta’s weight and short-chain fatty acid level of a Sprague–Dawley rat model

Setyawati SOEHARTO, Etik SULISTYOWATI, Dian HANDAYANI, Achmad RUDIJANTO

Pleuroparenchymal fibroelastosis in systemic sclerosis-associated interstitial lung disease

Emre BİLGİN, Ali AKDOĞAN, Alper SARI, Berkan ARMAĞAN, Ömer ÖNDER, Macit ARIYÜREK, Gözde Kübra YARDIMCI, Ertuğrul Çağrı BÖLEK, Bayram FARİSOĞULLARI

SARS-COV-2 vaccine: first-month results of a six-month follow-up study

Salih ÇETİNER, Filiz KİBAR, Aslıhan CANDEVİR, Burak METE, Ertan KARA, Hakan DEMİRHİNDİ, Ferdi TANIR, Rabia DAL

Modulatory effect of resveratrol and melatonin on natural killer cell activity and adrenomedullin in diabetic rats

Alpaslan TANOĞLU, Fatih ÖZÇELİK, Fatih HACIMUSTAFAOĞLU

Effects of pulmonary rehabilitation on diaphragm thickness and contractility in patients with chronic obstructive pulmonary disease

Yesim KURTAİŞ AYTÜR, Aysun GENÇ, Akın KAYA, Fatma ÇİFTÇİ, Seçilay GÜNEŞ, Serhat HAYME

Bio-clinical evaluation of collateral score in acute middle cerebral artery occlusion

Hesna BEKTAŞ, Esra DEMİR ÜNAL, Oğuzhan KURŞUN, Hasan BAYINDIR

Utility of ETCO₂ to predict hemorrhagic shock in multiple trauma patients

Gülşen ÖZTÜRK ÖRMECİ, Oktay ERAY, Özlem YİĞİT

Effect of tocilizumab on intensive care patients with Covid-19 pneumonia, a retrospective cohort study

Mehtap PEHLİVANLAR KÜÇÜK, Ahmet Oğuzhan KÜÇÜK, Gamze KILIÇ, Yılmaz BÜLBÜL, Tevfik ÖZLÜ, Ayşegül PEHLİVANLAR, Funda ÖZTUNA, Sevil AYAYDIN MÜRTEZAOĞLU, Kadir ÇOBAN, Olcay AYÇİÇEK

A comparison of angled (D-Blade) and Macintosh (C-MAC) videolaryngoscopes for simulated pediatric difficult airway: a randomized single-blind study

Kamil TOKER, Hadi Ufuk YÖRÜKOĞLU, Volkan ALPARSLAN, Alparslan KUŞ, Can AKSU

A COVID-19 first evaluation clinic at a university hospital in Turkey

Alpaslan ALP, Serhat ÜNAL, Figen DEMİRKAZIK, Meliha Çağla SÖNMEZER, Hayriye ALTUNAY, Ahmet Görkem ER, Gamze DURHAN, Çağlayan Merve AYAZ CEYLAN, Ahmet Çağkan İNKAYA, Ömrüm UZUN, Murat AKOVA, Gökhan METAN, Tuğba SARICAOĞLU, Şehnaz ÖZYAVUZ ALP, Zahit TAŞ, Gülçin TELLİ DİZMAN, Mertcan UZUN, Gamze GÜRSOY