A high-fat and high-fructose diet lowers the cecal digesta’s weight and short-chain fatty acid level of a Sprague–Dawley rat model

A high-fat and high-fructose diet lowers the cecal digesta’s weight and short-chain fatty acid level of a Sprague–Dawley rat model

Background/aim: This study aimed to analyze the effect of a high-fat and high-fructose diet (HFFD) on the digesta weight and shortchain fatty acid (SCFA) levels of cecal digesta in rats. Materials and methods: This study was an experimental study with a posttest-only control group design with male Sprague–Dawley strain rats as the samples. A total of 36 rats were divided into two groups with normal diet (N) and modified HFFD. The data of energy intake, nutrients and fiber, body weight, Lee index, abdominal circumference, digesta weight, and SCFA levels of cecal digesta were collected. Results: The results showed an 11.94% increase in body weights of rats with HFFD. The total energy intake of the HFFD group was significantly higher than that of N (p = 0.000). The fiber intake and cecal digesta weight in group N were higher than that in the HFFD group (p = 0.00 and p = 0.02, respectively). The concentrations of acetate, butyrate, propionate, and total SCFA in the N group were significantly higher than in the HFFD (p = 0.041,,p = 0.004, p = 0.040, p = 0.013, respectively). A significant negative relationship was observed between the abdominal circumference and cecal digesta concentration (p = 0.029; r = −0.529) and between the Lee index and the SCFA concentration of cecal digesta (p = 0.036, r = −0.206). Conclusion: The research results showed that HFFD can reduce the weight and SCFA concentration of the cecal digesta. The negative relationship between abdominal circumference, the Lee index, and the SCFA concentration indicates the potential role in obesity incidence and metabolic diseases.

___

  • 1. Greenwood HC, Bloom SR, Murphy KG. Peptides and their potential role in the treatment of diabetes and obesity. The Review of Diabetic Studies: RDS 2011; 8 (3): 355-368. doi: 10.1900/RDS.2011.8.355.
  • 2. Shrimpton R, Rokx C. The DOUBLE BURDEN OF MALNUTRITION: A REVIEW OF GLOBAL EVIDENCE. Health, Nutrition and Population Discussion Paper. Washington, DC, USA: World Bank Group; 2012.
  • 3. Forse RA, Krishnamurty DM. Epidemiology and discrimination in obesity. In: Nguyen NT, Blackstone RP, Morton JM, Ponce J, Rosenthal RJ (editors). The ASMBS Textbook of Bariatric Surgery. Vol. 1. New York, NY, USA: Springer; 2015.
  • 4. Ye J. Mechanisms of insulin resistance in obesity. Frontiers of Medicine 2013; 7 (1): 14-24. doi: 10.1007/s11684-013-0262-6
  • 5. Lavie CJ, De Schutter A, Patel DA, Romero-Corral A, Artham SM et al. Body composition and survival in stable coronary heart disease: impact of lean mass index and body fat in the “obesity paradox”. Journal of the American College of Cardiology 2012; 60 (15): 1374-80. doi: 10.1016/j.jacc.2012.05.037.
  • 6. Malik VS, Hu FB. Sweeteners and risk of obesity and type 2 diabetes: the role of sugar-sweetened beverages. Current Diabetes Reports 2012; 12: 195-203. doi: 10.1007/s11892-012-0259-6
  • 7. Landsberg L, Aronne LJ, Beilin LJ, Burke V, Igel LI et al. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment: a position paper of The Obesity Society and the American Society of Hypertension. Journal of Clinical Hypertension (Greenwich.) 2013; 15 (1): 14-33. doi: 10.1111/ jch.12049.
  • 8. Kementrian Kesehatan Republik Indonesia. Hasil Utama RISKESDAS 2018. Jakarta, Indonesia: Badan Penelitian dan Pengembangan Kesehatan; 2018 (in Indonesian).
  • 9. Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C et al. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutrition & Metabolism 2016; 13 (15): 1-13. doi: 10.1186/ s12986-016-0074-1.
  • 10. Mamikutty N, Thent ZC, Sapri SR, Sahruddin NN, Yusof MRMY et al. The establishment of metabolic syndrome model by induction of fructose drinking water in male Wistar rats. BioMed Research International 2014; 2014 (263897): 1-8. doi: 10.1155/2014/263897
  • 11. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nature Reviews Microbiology 2008; 6: 121-131. doi: 10.1038/nrmicro1817
  • 12. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009; 58 (7): 1509-1517. doi: 10.2337/db08- 1637.
  • 13. Hariri N, Thibault L. High fat diet induced obesity in animal model. Nutrition Research Review 2010; 23 (2): 270-299. doi: 10.1017/S0954422410000168.
  • 14. Albertson AM, Reicks M, Joshi N, Carolyn K. Whole grain consumption trends and associations with body weight measures in the United States: results from the cross-sectional National Health and Nutrition Examination Survey 2001-2012. Nutrition Journal 2016; 15 (8): 1-14. doi: 10.1186/s12937-016- 0126-4
  • 15. Delzenne NM, Neyrinck AM, Bäckhed F, Cani PD. Targeting gut microbiota in obesity: Effects of prebiotics and probiotics. Nature Reviews: Endocrinology 2011; 7 (11): 639-646. doi: 10.1038/nrendo.2011.126.
  • 16. Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TM, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutrition & Diabetes 2014; 4 (6): 1-7. doi: 10.1038/nutd.2014.23.
  • 17. Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. Plos One 2012; 7 (4): e35240. doi: 10.1371/journal.pone.0035240
  • 18. Weitkunat K, Schumann S, Nickel D, Hornemann S, Petzke KJ et al. Odd-chain fatty acids as a biomarker for dietary fiber intake: a novel pathway for endogenous production from propionate. The American Journal of Clinical Nutrition 2017; 105 (6): 1544-1551. doi: 10.3945/ajcn.117.152702
  • 19. Miyamoto J, Watanabe K, Taira S, Kasubuchi M, Li X et al. Barley β-glucan improves metabolic condition via short-chain fatty acids produced by gut microbial fermentation in high fat diet fed mice. Plos One 2018; 13 (4): e0196579. doi: 10.1371/ journal.pone.0196579
  • 20. Bloemen JG, Venema K, van de Poll MC, Olde Damink SW, Buurman WA et al. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clinical Nutrition 2009; 28 (6): 657-661. doi: 10.1016/j.clnu.2009.05.011
  • 21. Sulistyowati E, Handayani D, Soeharto S, Rudijanto A. Serum mineral (Mg, Mn, and K) levels are associated with increasing the body mass index (BMI) and abdominal circumference. Obesity Medicine 2019; 15: 100107. doi: 10.1016/j. obmed.2019.100107
  • 22. Federer WT. Experimental Design: Theory and Application. Oxford, England: IBH Publishing Company; 1967.
  • 23. Lee JS, Jun D, Kim EK, Jeon HJ, Nam HH et al. Histologic and metabolic derangement in high-fat, high-fructose, and combination diet animal models. The Scientific World Journal 2015; 2015 (306326): 1-9. doi: 10.1155/2015/306326
  • 24. Marquest CL, Meirelesa M, Norbertoa S, Leitea J, Freitasa J et al. High-fat diet-induced obesity rat model: a comparison between Wistar and Sprague-Dawley Rat. Adipocyte 2016; 5 (1): 11-21. doi: 10.1080/21623945.2015.1061723.
  • 25. Imam MU, Musa SNA, Azmi NH, Ismail M. Effects of white rice, brown rice and germinated brown riceon antioxidant status of type 2 diabetic rats. International Journal of Molecular Sciences 2012; 13 (10): 12952-12969. doi: 10.3390/ ijms131012952.
  • 26. Senaphan K, Kukongviriyapan U, Sangartit W, Pakdeechote P, Pannangpetch P et al. Ferulic acid alleviates changes in a rat model of metabolic syndrome induced by high-carbohydrate, high-fat diet. Nutrients 2015; 7 (8): 6446-6464. doi: 10.3390/ nu7085283.
  • 27. Dong J, Zhu Y, Ma Y, Xiang Q, Shen R et al. Oat products modulate the gut microbiota and produce anti-obesity effects in obese rats. Journal of Functional Foods 2016; 25: 408-420. doi: 10.1016/j.jff.2016.06.025
  • 28. Aswandi A, Sutrisno CI, Arifin A, Joelal A. Effect complete feed containing starch tubers of different varieties of banana plants on pH, NH3 and VFA of Kacang Goat. Jurnal Ilmu dan Teknologi Peternakan 2012; 2 (2): 99-109 (article in Indonesian with an abstract in English).
  • 29. Salazar N, Dewulf EM, Neyrinck AM, Bindels LB, Cani D et al. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clinical Nutrition (Edinburg, Scotland) 2015; 34 (501): e507. doi: 10.1016/j.clnu.2014.06.001.
  • 30. Hald S, Schioldan AG, Moore ME, Dige E, Laeker HG et al. Effects of arabinoxylan and resistant starch on intestinal microbiota and short-chain fatty acids in subjects with metabolic syndrome: a randomised crossover study. Plos One 2016; 11 (7): e0159223. doi: 10.1371/journal.pone.0159223
  • 31. Heinritz SN, Weiss E, Eklund M, Aumiller T, Heyer CME et al. Impact of a high-fat or high-fiber diet on intestinal microbiota and metabolic markers in a pig model. Nutrients 2016; 8 (5): 1-16. doi: 10.3390/nu8050317.
  • 32. Angelova P, Boyadjiev N. A review on the models of obesity and metabolic syndrome in rats. Trakia Journal of Sciences 2013; 1: 5-12.
  • 33. Cluny LN, Eller LK, Keenan CM, Reimer RA, Sharkey KA. Interactive effects of oligofructose and obesity predisposition on gut hormones and microbiota in diet-induced obese rats. Obesity 2015; 23 (4): 769-778. doi: 10.1002/oby.21017.
  • 34. Levin BE, Dunn-Meynell AA. Defense of body weight depends on dietary composition and palatability in rats with diet-induced obesity. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology 2002; 282 (1): R46-R54. doi: 10.1152/ajpregu.2002.282.1.R46
  • 35. Miras AD, Seyfried F, Phinikaridou A, Andia ME, Christakis I et al. Rats fed diets with different energy contribution from fat do not different in adiposity. Obesity Facts 2014; 7 (5): 302-310. doi: 10.1159/000368622.
  • 36. Weickert MO, Pfeiffer AFH. Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. Journal of Nutrition 2018; 148 (1): 7-12. doi: 10.1093/jn/ nxx008.
  • 37. Louis P, Scott KP, Duncan SH, Flint HJ. Understanding the effects of diet on bacterial metabolism in the large intestine. Journal of Applied Microbiology 2007; 102 (5): 1197-1208. doi: 10.1111/j.1365-2672.2007.03322.x.
  • 38. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology 2015; 11: 577-591. doi: 10.1038/nrendo.2015.128
  • 39. Alou MT, Lagier JC, Raoult D. Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Human Microbiome Journal 2016; 1: 3-11. doi: 10.1016/j.humic.2016.09.001
  • 40. Cuervo A, Salazar N, Ruas-Madiedo P, Gueimonde M, Gonzalez S. Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutrition Research 2013; 33 (10): 811-816. doi: 10.1016/j.nutres.2013.05.016.
  • 41. Miller TL, Wolin MJ. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Applied and Environmental Microbiology 1996; 62 (5): 1589-1592. doi: 10.1128/AEM.62.5.1589-1592.1996.
  • 42. Louis P, Hold GL, Flint J. The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology 2014; 12: 661-672. doi: 10.1038/nrmicro3344
  • 43. Reichardt N, Duncan SH, Young P, Belenguer A, Leitch CM et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. The ISME Journal 2014; 8: 1323-1335. doi: 10.1038/ismej.2014.14
  • 44. Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe 2018; 23 (6): 705-715. doi: 10.1016/j. chom.2018.05.012.
  • 45. Barczynskar R, Litwin M, Slizewska K, Szalecki M, Berdowska A et al. Bacterial microbiota and fatty acids in the faeces of overweight and obese children. Polish Journal of Microbiology 2018; 67 (3): 339-345. doi: 10.21307/pjm-2018-041.
  • 46. Den Besten G, Bleeker A, Gerding A, Van Eunen K, Havinga R et al. Short-chain fatty acids protect against high-fat dietinduced obesity viaa PPAR gamma-dependent switch from lipogenesis to fat oxidation. Diabetes 2015; 64 (7): 2398-2408. doi: 10.2337/db14-1213.
  • 47. Lin HV, Frassetto A, Kowalik EJJr, Nawrocki AR, Lu MM et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor3- independent mechanisms. Plos One 2012; 7 (4): e35240. doi: 10.1371/journal.pone.0035240.
  • 48. Jung TH, Park JH, Jeon WM, Han KS. Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway. Nutrition Research and Practice 2015; 9 (4): 343-349. doi: 10.4162/ nrp.2015.9.4.343.
  • 49. Frost G, Cai Z, Raven M, Otway D, Mushtaq R et al. Effect of short chain fatty acids on the expression of free fatty acid receptor 2 (Ffar2), Ffar3 and early stage adipogenesis. Nutrition Diabetes 2014; 4 (8): e128. doi: 10.1038/nutd.2014.25. 50. Suzuki K, Jayasena CN, Bloom SR. Obesity and appetite control. Experimental Diabetes Research 2012; 2012: 1-19. doi: 10.1155/2012/824305.
  • 51. Ross AB, Pere-Trépat E, Montoliu I, Martin FPJ, Collino S et al. A wholegrain-rich diet reduces urinary excretion of markers of protein catabolism and gut microbiota metabolism in healthy men after one week. Journal of Nutrition 2013; 143 (6): 766- 773. doi: 10.3945/jn.112.172197.
  • 52. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C et al. Microbiota-generated metabolites promote metabolic benefits via gut brain neural circuits. Cell 2014; 156 (1-2): 84-96. doi: 10.1016/j.cell.2013.12.016.
  • 53. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature Communications 2013; 4: 1-12. doi: 10.1038/ncomms2852
  • 54. Greiner TU, Backhed F. Microbial regulation of GLP-1 and Lcell biology. Molecular Metabolism 2016; 5 (9): 753-758. doi: 10.1016/j.molmet.2016.05.012
  • 55. Mishra AK, Dubey V, Ghosh AR. Obesity: An overview of possible role(s) of gut hormones, lipid sensing and gut microbiota. Metabolism: Clinical and Experimental 2016; 65 (1): 48-65. doi: 10.1016/j.metabol.2015.10.008.
  • 56. Bae YJ, Choi MK, Kim MH. Manganese supplementation reduces the blood cholesterol levels in Ca-deficient ovariectomized rats. Biological Trace Element Research 2011; 141 (1-3): 224-231. doi: 10.1007/s12011-010-8714-1.
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

The relationship between hidradenitis suppurativa and irritable bowel syndrome: a cross-sectional study

Recep DURSUN, Gözde ULUTAŞ DEMİRBAŞ, Abdullah DEMİRBAŞ, Mustafa ATASOY, Ömer Faruk ELMAS, Hediye EKER, Torello LOTTİ, Ümit TÜRSEN

Antimicrobial activities of Ankaferd BloodStopper, hypochlorous acid, and chlorhexidine against specific organisms

Alper AKTAŞ, Selen ADİLOĞLU, Ahmet KOLUMAN

Nonscarring scalp alopecia: Which laboratory analysis should we perform on whom?

Necmettin AKDENİZ, Ümran ÖNER

Pleuroparenchymal fibroelastosis in systemic sclerosis-associated interstitial lung disease

Emre BİLGİN, Ali AKDOĞAN, Alper SARI, Berkan ARMAĞAN, Ömer ÖNDER, Macit ARIYÜREK, Gözde Kübra YARDIMCI, Ertuğrul Çağrı BÖLEK, Bayram FARİSOĞULLARI

The impact of JAK2V617F mutation on Philadelphia-negative myeloproliferative neoplasms

İpek YÖNAL HİNDİLERDEN, Fehmi HİNDİLERDEN, Aynur ADAY, Meliha NALÇACI, Ezgi ŞAHİN

A COVID-19 first evaluation clinic at a university hospital in Turkey

Alpaslan ALP, Serhat ÜNAL, Figen DEMİRKAZIK, Meliha Çağla SÖNMEZER, Hayriye ALTUNAY, Ahmet Görkem ER, Gamze DURHAN, Çağlayan Merve AYAZ CEYLAN, Ahmet Çağkan İNKAYA, Ömrüm UZUN, Murat AKOVA, Gökhan METAN, Tuğba SARICAOĞLU, Şehnaz ÖZYAVUZ ALP, Zahit TAŞ, Gülçin TELLİ DİZMAN, Mertcan UZUN, Gamze GÜRSOY

Interstitial lung disease in patients with systemic lupus erythematosus: a cohort study

Esen KIYAN, Yasemin YALÇINKAYA, Ahmet GÜL, Murat İNANÇ, Mahmude Lale ÖÇAL, Bahar ARTIM ESEN, Ali Aslan DEMİR, Naci ŞENKAL

Predictors of postendoscopic retrograde cholangiopancreatography associated cholangitis: a retrospective cohort study

Hasan YILMAZ, Burcu KOÇYİĞİT

Hidden threat in familial Mediterranean fever: subclinical inflammation, oxidative stress and their relationship with vitamin D status

Ayşenur PAÇ KISAARSLAN, Didem BARLAK KETİ, MHD Boshr ALESH, Sabahattin MUHTAROĞLU, Sema Nur TAŞKIN

Evaluation of coagulation with TEG in patients diagnosed COVID-19

Celalettin VATANSEV, Serkan KÜÇÇÜKTÜRK, Adem KÜÇÜK, Mehmet Ali KARASELEK, Resül YILMAZ, Ahmet TOPAL, Hülya VATANSEV, Şebnem YOSUNKAYA