Modulatory effect of resveratrol and melatonin on natural killer cell activity and adrenomedullin in diabetic rats

Modulatory effect of resveratrol and melatonin on natural killer cell activity and adrenomedullin in diabetic rats

Background/aim: Epidemiological evidence suggests that diabetes poses a high risk for many chronic diseases, especially cardiovascular diseases, and cancer by stimulating many inflammatory and immunological pathogenic mediators and affecting natural killer (NK)-cell activity. In this study, the effects of melatonin and resveratrol on IL-6, TNF-alpha, oxidant/antioxidant capacity, NK-cell activity, and mid-regional proadrenomedullin (MR-proADM) levels of diabetic rats were investigated. Materials and methods: In the study, 28 Sprague Dawley rats were randomly divided into the control group (group I) and 3 streptozotocininduced diabetes mellitus (DM) groups (group II, III, and IV), each group consisting of 7 rats. Five mg/kg/day melatonin to group III and 5 mg/kg/day resveratrol (intraperitoneal) to group IV was given. At the end of 3 weeks, NK-cell activity, total antioxidant/oxidant capacity, MR-proADM, IL-6, and TNF-alpha levels were measured in intracardiac blood taken under anesthesia. Results: NK-cell activity of group II was found lower than group I, group III, and group IV (7.4 ± 2.0 vs. 22.5 ± 11.9, 30.6 ± 22.5 and 20.4 ± 9.1 pg/mL; p = 0.0018, respectively). The difference was more prominent in diabetic rats receiving melatonin (p < 0.01). TNF-alpha levels of group II were higher than the group I (p < 0.05). The MR-proADM levels of group II were found to be lower than the group I and group III (6.4 ± 3.6 vs. 14.4 ± 3.2 and 14.0 ± 4.2 ng/L; p < 0.05, respectively). In addition, NK-cell activity was moderately correlated with MR-proADM (r = 0.5618, p = 0.0019). Conclusion: Resveratrol and, more effectively, melatonin modulate by reversing the adverse effects of diabetes on NK-cell activity, which has a protective function in inflammatory and immunological processes. In this modulation, melatonin also acts through adrenomedullin.

___

  • 1. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM et al. Diabetes and cancer: a consensus report. Diabetes Care 2010; 33 (7): 1674-1685. doi: 10.2337/dc10-0666
  • 2. Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G et al. The role of inflammation in diabetes: current concepts and future perspectives. European Cardiology Review 2019; 14 (1): 50-59. doi: 10.15420/ ecr.2018.33.1
  • 3. Kärre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H–2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 1986; 319 (6055): 675-678. doi: 10.1038/319675a0
  • 4. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L et al. Innate or adaptive immunity? The example of natural killer cells. Science 2011; 331 (6013): 44-49. doi: 10.1126/ science.1198687
  • 5. Piątkiewicz P, Bernat-Karpińska M, Miłek T, Rabijewski M, Rosiak E. NK cell count and glucotransporter 4 (GLUT4) expression in subjects with type 2 diabetes and colon cancer. Diabetology & Metabolic Syndrome 2016; 8: 38. doi: 10.1186/ s13098-016-0152-6
  • 6. Yoshimoto T, Fukai N, Sato R, Sugiyama T, Ozawa N et al. Antioxidant effect of adrenomedullin on angiotensin IIinduced reactive oxygen species generation in vascular smooth muscle cells. Endocrinology 2004; 145 (7): 3331-3337. doi: 10.1210/en.2003-1583
  • 7. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Biology and Medicine 2010; 49 (11): 1603-1616. doi: 10.1016/j.freeradbiomed.2010.09.006
  • 8. Siernicka M, Winiarska M, Bajor M, Firczuk M, Muchowicz A et al. Adenanthin, a new inhibitor of thiol-dependent antioxidant enzymes, impairs the effector functions of human natural killer cells. Immunology 2015; 146 (1): 173-183. doi: 10.1111/imm.12494
  • 9. López-Burillo S, Tan D-X, Mayo JC, Sainz RM, Manchester LC, Reiter RJ. Melatonin, xanthurenic acid, resveratrol, EGCG, vitamin C and α-lipoic acid differentially reduce oxidative DNA damage induced by Fenton reagents: a study of their individual and synergistic actions. Journal of Pineal Research 2003; 34 (4): 269-277. doi: 10.1034/j.1600-079X.2003.00041.x
  • 10. Aktaş HS, Ozel Y, Ahmad S, Pençe HH, Ayaz-Adakul B et al. Protective effects of resveratrol on hepatic ischemia reperfusion injury in streptozotocin-induced diabetic rats. Molecular and Cellular Biochemistry 2019; 460 (1-2): 217-224. doi: 10.1007/ s11010-019-03582-z
  • 11. Khorsand M, Akmali M, Akhzari M. Efficacy of melatonin in restoring the antioxidant status in the lens of diabetic rats induced by streptozotocin. Journal of Diabetes & Metabolic Disorders 2019; 18 (2): 543-549. doi: 10.1007/s40200-019- 00445-8
  • 12. Kazıkdaş K, Güneli E, Tuğyan K, Erbil G, Küme T et al. The effect of melatonin on experimentally-induced myringosclerosis in rats. Kulak Burun Bogaz Ihtisas Dergisi 2010; 20 (6): 299-304
  • 13. Prabhakar O. Cerebroprotective effect of resveratrol through antioxidant and anti-inflammatory effects in diabetic rats. Naunyn-Schmiedeberg’s Archives of Pharmacology 2013; 386 (8): 705-710. doi: 10.1007/s00210-013-0871-2
  • 14. Shoelson SE. Inflammation and insulin resistance. Journal of Clinical Investigation 2006; 116 (7): 1793-1801. doi: 10.1172/ JCI29069
  • 15. Moretta L, Montaldo E, Vacca P, Del Zotto G, Moretta F et al. Human natural killer cells: origin, receptors, function, and clinical applications. International Archives of Allergy and Immunology 2014; 164 (4): 253-264. doi: 10.1159/000365632
  • 16. Caligiuri MA. Human natural killer cells. Blood 2008; 112 (3): 461-469. doi: 10.1182/blood-2007-09-077438
  • 17. Rodacki M, Svoren B, Butty V, Besse W, Laffel L et al. Altered natural killer cells in type 1 diabetic patients. Diabetes 2007; 56 (1): 177-185. doi: 10.2337/db06-0493
  • 18. Grudzien M, Rapak A. Effect of natural compounds on NK cell activation. Journal of Immunology Research 2018. doi: 10.1155/2018/4868417
  • 19. Piątkiewicz P, Czech A, Tatoń J. Glucose transport in human peripheral blood lymphocytes influenced by type 2 diabetes mellitus. Archivum Immunologiae et Therapiae Experimentalis 2007; 55 (2): 119-126. doi: 10.1007/s00005-007-0015-9
  • 20. Leischner C, Burkard M, Pfeiffer MM, Lauer UM, Busch C, Venturelli S. Nutritional immunology: function of natural killer cells and their modulation by resveratrol for cancer prevention and treatment. Nutrition Journal 2015; 15 (1): 47. doi: 0.1186/s12937-016-0167-8
  • 21. Vallianou NG, Evangelopoulos A, Kazazis C. Resveratrol and diabetes. The Review of Diabetic Studies 2013; 10 (4): 236-242. doi: 10.1900/RDS.2013.10.236
  • 22. Walker JM, Eckardt P, Aleman JO, Da Rosa JC, Liang Y et al. The effects of trans-resveratrol on insulin resistance, inflammation, and microbiota in men with the metabolic syndrome: a pilot randomized, placebo controlled clinical trial. Journal of Clinical and Translational Research 2018; 4 (2): 122- 135. doi.org/10.18053/jctres.04.201802.004
  • 23. Kimura Y, Okuda H. Resveratrol ısolated from polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in lewis lung carcinoma-bearing mice. The Journal of Nutrition 2001; 131 (6): 1844-1849. doi.org/10.1093/jn/131.6.1844
  • 24. Malaguarnera. Influence of resveratrol on the ımmune response. nutrients 2019; 11 (5): 946. doi.org/10.3390/ nu11050946
  • 25. LeRoith D, Novosyadlyy R, Gallagher E, Lann D, Vijayakumar A et al. Obesity and type 2 diabetes are associated with an ıncreased risk of developing cancer and a worse prognosis; epidemiological and mechanistic evidence. Experimental and Clinical Endocrinology & Diabetes 2008; 116 Suppl 1: S4–S6. doi.org/10.1055/s-2008-1081488
  • 26. Chahbouni M, Escames G, Venegas C, Sevilla B, García JA et al. Melatonin treatment normalizes plasma pro-inflammatory cytokines and nitrosative/oxidative stress in patients suffering from Duchenne muscular dystrophy. Journal of Pineal Research 2010; 48 (3): 282-289. doi.org/10.1111/j.1600- 079X.2010.00752.x
  • 27. Miller SC, Pandi PSR, Esquifino AI, Cardinali DP, Maestroni GJM. The role of melatonin in immuno-enhancement: potential application in cancer. International Journal of Experimental Pathology 2006; 87 (2): 81-87. doi.org/10.1111/ j.0959-9673.2006.00474.x
  • 28. Kor Y, Geyikli I, Keskin M, Akan M. Preliminary study: evaluation of melatonin secretion in children and adolescents with type 1 diabetes mellitus. Indian Journal of Endocrinology and Metabolism 2014; 18 (4): 565-568. doi: 10.4103/2230- 8210.137521
  • 29. Peschke E, Schucht H, Mühlbauer E. Long-term enteral administration of melatonin reduces plasma insulin and increases expression of pineal insulin receptors in both Wistar and type 2-diabetic Goto-Kakizaki rats. Journal of Pineal Research 2010; 49 (4): 373-381. doi: 10.1111/j.1600- 079X.2010.00804.x
  • 30. Cecon E, Oishi A, Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. British Journal of Pharmacology 2018; 175 (16): 3263-3280. doi: 10.1111/bph.13950
  • 31. Borst SE. The role of TNF-α in ınsulin resistance. Endocrine 2004; 23 (2-3): 177-182. doi: 10.1385/ENDO:23:2-3:177
  • 32. Lowe G, Woodward M, Hillis G, Rumley A, Li Q et al. Circulating inflammatory markers and the risk of vascular complications and mortality in people with type 2 diabetes and cardiovascular disease or risk factors: the ADVANCE study. Diabetes 2014; 63 (3): 1115-1123. doi: 10.2337/db12-1625
  • 33. Carey AL, Febbraio MA. Interleukin-6 and insulin sensitivity: friend or foe? Diabetologia 2004; 47 (7): 1135-1142. doi: 10.1007/s00125-004-1447-y
  • 34. Cifaldi L, Prencipe G, Caiello I, Bracaglia C, Locatelli F et al. Inhibition of Natural killer cell cytotoxicity by Interleukin-6: ımplications for the pathogenesis of macrophage activation syndrome. Arthritis & Rheumatology 2015; 67 (11): 3037- 3046. doi: 10.1002/art.39295
  • 35. Ďuračková Z. Some current ınsights into oxidative stress. Physiology Resolution 2010; 59 (4): 459-469. doi: 10.33549/ physiolres.931844
  • 36. Cecon E, Oishi A, Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. British Journal of Pharmacology 2018; 175 (16): 3263-3280. doi: 0.1111/bph.13950
  • 37. Wu R, Feng J, Yang Y, Dai C, Lu A et al. Significance of serum total oxidant/antioxidant status in patients with colorectal cancer. PLOS ONE 2017; 12 (1): e0170003. doi: 10.1371/ journal.pone.0170003
  • 38. Coppock HA, Owji AA, Bloom SR, Smith DM. A rat skeletal muscle cell line (L6) expresses specific adrenomedullin binding sites but activates adenylate cyclase via calcitonin gene-related peptide receptors. Biochemical Journal 1996; 318 ( Pt 1): 241- 245. doi: 10.1042/bj3180241
  • 39. Shimekake Y, Nagata K, Ohta S, Kambayashi Y, Teraoka H et al. Adrenomedullin stimulates two signal transduction pathways, cAMP accumulation and Ca2+ mobilization, in bovine aortic endothelial cells. Journal of Biological Chemistry 1995; 270 (9): 4412-4417. doi: 10.1074/jbc.270.9.4412
  • 40. Matteo R De, May CN. Direct coronary vasodilator action of adrenomedullin is mediated by nitric oxide. British Journal of Pharmacology 2003; 140 (8): 1414-1420. doi: 10.1038/ sj.bjp.0705572
  • 41. Shoji H, Minamino N, Kangawa K, Matsuo H. Endotoxin markedly elevates plasma concentration and gene transcription of adrenomedullin in rat. Biochemical and Biophysical Research Communications 1995; 215 (2): 531-537. doi: 10.1006/bbrc.1995.2497
  • 42. Chini EN, Chini CCS, Bolliger C, Jougasaki M, Grande JP et al. Cytoprotective effects of adrenomedullin in glomerular cell injury: central role of cAMP signaling pathway. Kidney International 1997; 52 (4): 917-925. doi: 10.1038/ki.1997.413
  • 43. Zhang S-Y, Lv Y, Zhang H, Gao S, Wang T et al. Adrenomedullin 2 improves early obesity-ınduced adipose ınsulin resistance by ınhibiting the class II MHC in adipocytes. Diabetes 2016; 65 (8): 2342-2355. doi: 10.2337/db15-1626
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

A high-fat and high-fructose diet lowers the cecal digesta’s weight and short-chain fatty acid level of a Sprague–Dawley rat model

Setyawati SOEHARTO, Etik SULISTYOWATI, Dian HANDAYANI, Achmad RUDIJANTO

The relationship between hidradenitis suppurativa and irritable bowel syndrome: a cross-sectional study

Recep DURSUN, Gözde ULUTAŞ DEMİRBAŞ, Abdullah DEMİRBAŞ, Mustafa ATASOY, Ömer Faruk ELMAS, Hediye EKER, Torello LOTTİ, Ümit TÜRSEN

The effects of a combination treatment with mesenchymal stem cell and platelet-rich plasma on tendon healing: an experimental study

Sıddıka FINDIK, İlker UYAR, Zeynep ALTUNTAŞ, Mehmet Emin Cem YILDIRIM, Serhat YARAR, Murat AKTAN, Ahmet AVCI

Predictors of postendoscopic retrograde cholangiopancreatography associated cholangitis: a retrospective cohort study

Hasan YILMAZ, Burcu KOÇYİĞİT

Developing the Nausea and Vomiting Thermometer Scale in children with cancer

Aslı AKDENİZ KUDUBEŞ, Murat BEKTAŞ

Modulatory effect of resveratrol and melatonin on natural killer cell activity and adrenomedullin in diabetic rats

Alpaslan TANOĞLU, Fatih ÖZÇELİK, Fatih HACIMUSTAFAOĞLU

Investigation of the expression levels of CDH1, FHIT, PTEN, and TTPAL genes in colorectal tumors

Yüksel ARIKAN, Zafer SÖYLEMEZ, Evrim Suna ARIKAN SÖYLEMEZ, Mustafa SOLAK, Çiğdem TOKYOL, Murat ÇİLEKAR, İbrahim Halil KENGER

Evaluation of the contribution of fine-needle non-aspiration cytology to diagnosis in cases with pulmonary malignant lesions

Güntülü AK, Selma METİNTAŞ, Muzaffer METİNTAŞ, Şenay YILMAZ, Emine DÜNDAR

Germline variant screening with targeted next generation sequencing in prostate cancer: phenotype-genotype correlation

Alper ÖZORAK, Ali Yavuz ÇAKIR, Kuyaş HEKİMLER ÖZTÜRK

Bio-clinical evaluation of collateral score in acute middle cerebral artery occlusion

Hesna BEKTAŞ, Esra DEMİR ÜNAL, Oğuzhan KURŞUN, Hasan BAYINDIR