Immune dysfunction in COVID-19 and judicious use of antirheumatic drugs for the treatment of hyperinflammation

Immune dysfunction in COVID-19 and judicious use of antirheumatic drugs for the treatment of hyperinflammation

Abstract: In the Wuhan province of China, almost two years ago, in December 2019, the novel Coronavirus 2019 has caused a severe involvement of the lower respiratory tract leading to an acute life-threatening respiratory syndrome, coronavirus disease-19 (COVID-19). Subsequently, coronavirus 2 (SARS-CoV-2) rapidly spread to the entire world causing a pandemic and affected every single person on earth either directly or indirectly with destroying all facets of social life and economy. Since the announcement of COVID-19 as a global pandemic, we have witnessed tremendous scientific work on all aspects of COVID-19 across the globe, which has never been witnessed before. The most remarkable achievement would be the introduction of vaccines, which provide protection from the severe infection and is the only premise for the control of disease. However, despite the tremendous work, the number of treatments either antiviral or immunomodulatory for infected patients are considerably limited, yet disease is causing substantial morbidity and mortality. COVID-19 follows heterogenous disease course among infected individuals, and dysregulated immune system is primarily responsible for the worse outcomes. Immune deficiency, being on corticosteroids for inflammatory diseases, delayed interferon response and advanced age adversely influence prognosis with impairing viral clearance. On the other hand, exuberant immune response with features of cytokine storm is the leading cause of death, which can be alleviated by use of either general immunosuppression with corticosteroids or selective neutralization of potent pro-inflammatory cytokines such as interleukin (IL)-1 and IL-6. Herein, we summarized the potential effective immunomodulatory treatments emphasizing in which patient population it is the most suitable, which dose should be administered, and which is the most appropriate timepoint to administer the drug during the course of the disease.Key words: SARS-CoV-2, COVID-19, inflammation, cytokine storm, treatment, rheumatology

___

  • 1. Kuri-Cervantes L, Pampena MB, Meng W, Rosenfeld AM, Ittner CAG et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Science Immunology. 2020;5(49). doi:10.1126/sciimmunol.abd7114
  • 2. Xu Z, Shi L, Wang Y, Zhang J, Huang L et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine. 2020. doi:10.1016/s2213-2600(20)30076-x
  • 3. Tomazini BM, Maia IS, Cavalcanti AB, Berwanger O, Rosa RG et al. Effect of Dexamethasone on Days Alive and VentilatorFree in Patients With Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. Journal of the American Medical Association. 2020;324(13):1307-1316. doi:10.1001/jama.2020.17021
  • 4. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine. 2020 ;382(18):1708-1720. doi:10.1056/NEJMoa2002032
  • 5. Gustine JN, Jones D. Immunopathology of Hyperinflammation in COVID-19. American Journal of Pathology. 2021;191(1):4- 17. doi:10.1016/j.ajpath.2020.08.009
  • 6. Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell. 2021;184(7):1671-1692. doi:10.1016/j.cell.2021.02.029
  • 7. Yang, Y., Shen, C., Li, J., Yuan, J., Wei, J. et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. The Journal of allergy and clinical immunology. 2020; 146 (1), 119–127.e4. doi. org/10.1016/j.jaci.2020.04.027
  • 8. Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA. Insights into the Recent 2019 Novel Coronavirus (SARSCoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens. 2020;9(3). doi:10.3390/pathogens9030186
  • 9. Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. Journal of General Virology. 2000;81(Pt 4):853-879. doi:10.1099/0022-1317-81-4-853
  • 10. Baez-Santos YM, St John SE, Mesecar AD. The SARScoronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Research. 2015;115:21-38. doi:10.1016/j.antiviral.2014.12.015
  • 11. Lu X, Pan J, Tao J, Guo D. SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFNbeta induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes. 2011;42(1):37-45. doi:10.1007/ s11262-010-0544-x
  • 12. Ujike M, Taguchi F. Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses. 2015;7(4):1700- 1725. doi:10.3390/v7041700
  • 13. Masters PS. The molecular biology of coronaviruses. Advances in Virus Research. 2006;66:193-292. doi:10.1016/s0065- 3527(06)66005-3
  • 14. Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF et al. A structural analysis of M protein in coronavirus assembly and morphology. Journal of Structural Biology. 2011;174(1):11-22. doi:10.1016/j.jsb.2010.11.021
  • 15. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virology Journal. 2019;16(1):69. doi:10.1186/s12985-019-1182-0
  • 16. Nieto-Torres JL, DeDiego ML, Verdiá-Báguena C, JimenezGuardeño JM, Regla-Nava JA et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathogens. 2014;10(5):e1004077. doi:10.1371/journal.ppat.1004077
  • 17. Xia S, Zhu Y, Liu M, Lan Q, Xu W et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cellular & Molecular Immunology. 2020. doi:10.1038/s41423-020-0374-2
  • 18. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv. 2020:2020.2001.2022.914952. doi:10.1101/2020.01.22.914952
  • 19. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020. doi:10.1016/j.cell.2020.02.052
  • 20. Ou X, Liu Y, Lei X, Li P, Mi D et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications. 2020;11(1):1620. doi:10.1038/s41467-020-15562-9
  • 21. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nature Reviews Immunology. 2014;14(1):36-49. doi:10.1038/nri3581
  • 22. Li G, Fan Y, Lai Y, Han T, Li Z et al. Coronavirus infections and immune responses. Journal of Medical Virology. 2020;92(4):424-432.
  • 23. George MR. Hemophagocytic lymphohistiocytosis: review of etiologies and management. Journal of Blood Medicine. 2014;5:69-86. doi:10.2147/jbm.s46255
  • 24. Ramos-Casals M, Brito-Zeron P, Lopez-Guillermo A, Khamashta MA, Bosch X. Adult haemophagocytic syndrome. Lancet. 2014;383(9927):1503-1516. doi:10.1016/s0140- 6736(13)61048-x
  • 25. McGonagle D, Sharif K, O’Regan A, Bridgewood C. Interleukin-6 use in COVID-19 pneumonia related macrophage activation syndrome. Autoimmunity Reviews. 2020:102537. doi:10.1016/j.autrev.2020.102537
  • 26. Huang C, Wang Y, Li X, Ren L, Zhao J et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi:10.1016/s0140- 6736(20)30183-5
  • 27. Qin C, Zhou L, Hu Z, Zhang S, Yang S et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clinical Infectious Diseases. 2020. doi:10.1093/cid/ ciaa248
  • 28. Liu Y, Yang Y, Zhang C, Huang F, Wang F et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China Life Sciences. 2020 Mar;63(3):364-374. doi: 10.1007/s11427-020-1643-8.
  • 29. Özger HS, Aysert Yıldız P, Gaygısız Ü, Uğraş Dikmen A, Demirbaş Gülmez Z et al. The factors predicting pneumonia in COVID-19 patients: preliminary results from a university hospital in Turkey. Turkish Journal of Medical Sciences. 2020 ;50(8):1810-1816. doi: 10.3906/sag-2005-385.
  • 30. Wang F, Nie J, Wang H, Zhao Q, Xiong Y et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. Journal of Infectious Diseases. 2020; 221 (11) : 1762-1769. doi:10.1093/infdis/jiaa150
  • 31. Crayne CB, Albeituni S, Nichols KE, Cron RQ. The Immunology of Macrophage Activation Syndrome. Frontiers in Immunology. 2019;10:119. doi:10.3389/fimmu.2019.00119
  • 32. Wang W, Liu X, Wu S, Chen S, Li Y et al. Definition and Risks of Cytokine Release Syndrome in 11 Critically Ill COVID-19 Patients With Pneumonia: Analysis of Disease Characteristics. Journal of infectious diseases. 2020; 222(9):1444–1451. doi. org/10.1093/infdis/jiaa387
  • 33. Zinkernagel RM. Immunology taught by viruses. Science. 1996;271(5246):173-178. doi:10.1126/science.271.5246.173
  • 34. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775-787. doi:10.1016/j.cell.2008.05.009
  • 35. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nature Reviews Immunolgy. 2010;10(7):490-500. doi:10.1038/nri2785
  • 36. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401(6754):708- 712. doi:10.1038/44385
  • 37. Gianfrancesco M, Hyrich KL, Al-Adely S, Carmona L, Danila MI et al. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Annals of Rheumatic Diseases. 2020;79(7):859-866. doi:10.1136/annrheumdis-2020-217871
  • 38. RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19. New England Journal of Medicine. 2021;384(8):693-704. doi:10.1056/NEJMoa2021436
  • 39. Romanou V, Koukaki E, Chantziara V, Stamou P, Kote A et al. Dexamethasone in the Treatment of COVID-19: Primus Inter Pares? Journal of Personalized Medicine 2021;11(6). doi:10.3390/jpm11060556
  • 40. Spagnuolo V, Guffanti M, Galli L, Poli A, Querini PR et al. Viral clearance after early corticosteroid treatment in patients with moderate or severe covid-19. Scientific Reports 2020;10(1):21291. doi:10.1038/s41598-020-78039-1
  • 41. De Luca G, Cavalli G, Campochiaro C, Della-Torre E, Angelillo P et al. GM-CSF blockade with mavrilimumab in severe COVID-19 pneumonia and systemic hyperinflammation: a single-centre, prospective cohort study. Lancet Rheumatolgy. 2020;2(8) :e465-e473. doi:10.1016/S2665-9913(20)30170-3
  • 42. Fatima SA, Asif M, Khan KA, Siddique N, Khan AZ. Comparison of efficacy of dexamethasone and methylprednisolone in moderate to severe covid 19 disease. Annals of Medicine and Surgery (Lond). 2020;60:413-416. doi:10.1016/j.amsu.2020.11.027
  • 43. Du Plessis EM, Lalla U, Allwood BW, Louw EH, Nortje A et al. Corticosteroids in critical COVID-19: are all corticosteroids equal? The South African Medical Journal. 2021;111(6):550- 553.
  • 44. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. Journal of the American Medical Association. 2020;324(13):1330-1341. doi:10.1001/jama.2020.17023
  • 45. Edalatifard M, Akhtari M, Salehi M, Naderi Z, Jamshidi A et al. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: results from a randomised controlled clinical trial. European Respiratory Journal. 2020;56(6). doi:10.1183/13993003.02808-2020
  • 46. Cui Y, Sun Y, Sun J, Liang H, Ding X et al. Efficacy and Safety of Corticosteroid Use in Coronavirus Disease 2019 (COVID-19): A Systematic Review and Meta-Analysis. Infectious Diseases and Therapy. 2021. doi:10.1007/s40121-021-00518-3
  • 47. Ramakrishnan S, Nicolau DV, Jr., Langford B, Mahdi M, Jeffers H et al. Inhaled budesonide in the treatment of early COVID-19 (STOIC): a phase 2, open-label, randomised controlled trial. Lancet Respiratory Medicine. 2021;9(7):763-772. doi:10.1016/ s2213-2600(21)00160-0
  • 48. Myall KJ, Mukherjee B, Castanheira AM, Lam JL, Benedetti G et al. Persistent Post-COVID-19 Interstitial Lung Disease. An Observational Study of Corticosteroid Treatment. Annals of the American Thoracic Society. 2021;18(5):799-806. doi:10.1513/AnnalsATS.202008-1002OC
  • 49. Al-Bari MA. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. Journal of Antimicrobial Chemotherapy. 2015;70(6):1608-1621. doi:10.1093/jac/dkv018
  • 50. Costedoat-Chalumeau N, Hulot JS, Amoura Z, Leroux G, Lechat P et al. Heart conduction disorders related to antimalarials toxicity: an analysis of electrocardiograms in 85 patients treated with hydroxychloroquine for connective tissue diseases. Rheumatology (Oxford). 2007;46(5):808-810. doi:10.1093/rheumatology/kel402
  • 51. D’Alessandro S, Scaccabarozzi D, Signorini L, Perego F, Ilboudo DP et al. The Use of Antimalarial Drugs against Viral Infection. Microorganisms. 2020;8(1). doi:10.3390/ microorganisms8010085
  • 52. RECOVERY Collaborative Group. Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. New England Journal of Medicine. 2020;383(21):2030-2040. doi:10.1056/NEJMoa2022926
  • 53. Axfors C, Schmitt AM, Janiaud P, Van’t Hooft J, Abd-Elsalam S et al. Mortality outcomes with hydroxychloroquine and chloroquine in COVID-19 from an international collaborative meta-analysis of randomized trials. Nature Communications. 2021;12(1):2349. doi:10.1038/s41467-021-22446-z
  • 54. Arumugham VB, Rayi A. Intravenous Immunoglobulin (IVIG). StatPearls. Treasure Island (FL): StatPearls Publishing LLC.; 2020.
  • 55. Rodriguez de la Concepcion ML, Ainsua-Enrich E, Reynaga E, Avila-Nieto C, Santos JR et al. High-dose intravenous immunoglobulins might modulate inflammation in COVID-19 patients. Life Science Alliance. 2021;4(9). doi:10.26508/ lsa.202001009
  • 56. Liu J, Chen Y, Li R, Wu Z, Xu Q et al. Intravenous immunoglobulin treatment for patients with severe COVID-19: a retrospective multicentre study. Clinical Microbiology and Infection. 2021; 27(10): 1488–1493. doi:10.1016/j.cmi.2021.05.012
  • 57. Omma A, Erden A, Armagan B, Guven SC, Karakas O et al. A single center experience of intravenous immunoglobulin treatment in Covid-19. International Immunopharmacology. 2021;98:107891. doi:10.1016/j.intimp.2021.107891
  • 58. Tabarsi P, Barati S, Jamaati H, Haseli S, Marjani M et al. Evaluating the effects of Intravenous Immunoglobulin (IVIg) on the management of severe COVID-19 cases: A randomized controlled trial. International Immunopharmacology. 2021;90:107205. doi:10.1016/j.intimp.2020.107205
  • 59. Gharebaghi N, Nejadrahim R, Mousavi SJ, Sadat-Ebrahimi SR, Hajizadeh R. The use of intravenous immunoglobulin gamma for the treatment of severe coronavirus disease 2019: a randomized placebo-controlled double-blind clinical trial. BMC Infectious Diseases. 2020;20(1):786. doi:10.1186/s12879- 020-05507-4
  • 60. Xiang HR, Cheng X, Li Y, Luo WW, Zhang QZ et al. Efficacy of IVIG (intravenous immunoglobulin) for corona virus disease 2019 (COVID-19): A meta-analysis. International Immunopharmacology. 2021;96:107732. doi:10.1016/j. intimp.2021.107732
  • 61. Kubota-Koketsu R, Terada Y, Yunoki M, Sasaki T, Nakayama EE et al. Neutralizing and binding activities against SARSCoV-1/2, MERS-CoV, and human coronaviruses 229E and OC43 by normal human intravenous immunoglobulin derived from healthy donors in Japan. Transfusion. 2021;61(2):356- 360. doi:10.1111/trf.16161
  • 62. Mascolo S, Carleo MA, Contieri M, Izzo S, Perna A et al. SARSCoV-2 and inflammatory responses: From mechanisms to the potential therapeutic use of intravenous immunoglobulin. Journal of Medical Virology. 2021;93(5):2654-2661. doi:10.1002/jmv.26651
  • 63. Henderson LA, Canna SW, Friedman KG, Gorelik M, Lapidus SK et al. American College of Rheumatology Clinical Guidance for Multisystem Inflammatory Syndrome in Children Associated With SARS-CoV-2 and Hyperinflammation in Pediatric COVID-19: Version 2. Arthritis Rheumatology. 2021;73(4):e13-e29. doi:10.1002/art.41616
  • 64. Ouldali N, Toubiana J, Antona D, Javouhey E, Madhi F et al. Association of Intravenous Immunoglobulins Plus Methylprednisolone vs Immunoglobulins Alone With Course of Fever in Multisystem Inflammatory Syndrome in Children. Journal of the American Medical Association. 2021;325(9):855- 864. doi:10.1001/jama.2021.0694
  • 65. Emeksiz S, Celikel Acar B, Kibar AE, Ozkaya Parlakay A, Perk O et al. Algorithm for the diagnosis and management of the multisystem inflammatory syndrome in children associated with COVID-19. International Journal of Clininical Practice. 2021;75(9):e14471. doi:10.1111/ijcp.14471
  • 66. Son MBF, Murray N, Friedman K, Young CC, Newhams MM et al. Multisystem Inflammatory Syndrome in Children - Initial Therapy and Outcomes. New England Journal of Medicine. 2021;385(1):23-34. doi:10.1056/NEJMoa2102605
  • 67. Yang L, Xie X, Tu Z, Fu J, Xu D et al. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduction and Targeted Therapy. 2021;6(1):255. doi:10.1038/s41392-021- 00679-0
  • 68. Uciechowski P, Dempke WCM. Interleukin-6: A Masterplayer in the Cytokine Network. Oncology. 2020;98(3):131-137. doi:10.1159/000505099
  • 69. Liao Y, Wang X, Huang M, Tam JP, Liu DX. Regulation of the p38 mitogen-activated protein kinase and dual-specificity phosphatase 1 feedback loop modulates the induction of interleukin 6 and 8 in cells infected with coronavirus infectious bronchitis virus. Virology. 2011;420(2):106-116. doi:10.1016/j. virol.2011.09.003
  • 70. Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients, National Science Review. 2020; 7: 998–1002, https://doi.org/10.1093/nsr/nwaa041.
  • 71. Chen X, Zhao B, Qu Y, Chen Y, Xiong J et al. Detectable Serum Severe Acute Respiratory Syndrome Coronavirus 2 Viral Load (RNAemia) Is Closely Correlated With Drastically Elevated Interleukin 6 Level in Critically Ill Patients With Coronavirus Disease 2019. Clinical Infectious Disease. 2020;71(8):1937- 1942. doi: 10.1093/cid/ciaa449.
  • 72. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group. Association Between Administration of IL-6 Antagonists and Mortality Among Patients Hospitalized for COVID-19: A Meta-analysis. Journal of the American Medical Association. 2021;326(6):499-518. doi:10.1001/jama.2021.11330
  • 73. A TV, Haikarainen T, Raivola J, Silvennoinen O. Selective JAKinibs: Prospects in Inflammatory and Autoimmune Diseases. BioDrugs. 2019;33(1):15-32. doi:10.1007/s40259- 019-00333-w
  • 74. Satarker S, Tom AA, Shaji RA, Alosious A, Luvis M et al. JAKSTAT Pathway Inhibition and their Implications in COVID-19 Therapy. Postgraduate Medical Journal. 2021;133(5):489-507. doi:10.1080/00325481.2020.1855921
  • 75. Fragoulis GE, McInnes IB, Siebert S. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology (Oxford). 2019;58(Suppl 1):i43-i54. doi:10.1093/rheumatology/key276
  • 76. Stebbing J, Sanchez Nievas G, Falcone M, Youhanna S, Richardson P et al. JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. Science Advances. 2021;7(1). doi:10.1126/sciadv.abe4724
  • 77. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395(10223):e30-e31. doi:10.1016/s0140-6736(20)30304-4
  • 78. Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. New England Journal of Medicine. 2021;384(9):795- 807. doi:10.1056/NEJMoa2031994
  • 79. Marconi VC, Ramanan AV, de Bono S, Kartman CE, Krishnan V et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respiratory Medicine. 2021. doi:10.1016/ S2213-2600(21)00331-3
  • 80. Guimaraes PO, Quirk D, Furtado RH, Maia LN, Saraiva JF et al. Tofacitinib in Patients Hospitalized with Covid-19 Pneumonia. New England Journal of Medicine. 2021;385(5):406-415. doi:10.1056/NEJMoa2101643
  • 81. Chen CX, Wang JJ, Li H, Yuan LT, Gale RP et al. JAK-inhibitors for coronavirus disease-2019 (COVID-19): a meta-analysis. Leukemia. 2021;35(9):2616-2620. doi:10.1038/s41375-021- 01266-6
  • 82. Sparks JA, Wallace ZS, Seet AM, Gianfrancesco MA, Izadi Z et al. Associations of baseline use of biologic or targeted synthetic DMARDs with COVID-19 severity in rheumatoid arthritis: Results from the COVID-19 Global Rheumatology Alliance physician registry. Annals of the Rheumatic Diseases. 2021;80(9):1137-1146. doi:10.1136/annrheumdis-2021-220418
  • 83. Solimani F, Meier K, Ghoreschi K. Janus kinase signaling as risk factor and therapeutic target for severe SARS-CoV-2 infection. European Journal of Immunology. 2021;51(5):1071- 1075. doi:10.1002/eji.202149173
  • 84. Rodriguez-Garcia JL, Sanchez-Nievas G, Arevalo-Serrano J, Garcia-Gomez C, Jimenez-Vizuete JM et al. Baricitinib improves respiratory function in patients treated with corticosteroids for SARS-CoV-2 pneumonia: an observational cohort study. Rheumatology (Oxford). 2021;60(1):399-407. doi:10.1093/rheumatology/keaa587
  • 85. Conti P, Gallenga CE, Tete G, Caraffa A, Ronconi G et al. How to reduce the likelihood of coronavirus-19 (CoV-19 or SARS-CoV-2) infection and lung inflammation mediated by IL-1. Journal of Biological Regulators & Homeostatic Agents. 2020;34(2):333-338. doi:10.23812/Editorial-Conti-2
  • 86. Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe Acute Respiratory Syndrome Coronavirus Viroporin 3a Activates the NLRP3 Inflammasome. Frontiers in Microbiology. 2019;10:50. doi:10.3389/fmicb.2019.00050
  • 87. Zhao N, Di B, Xu LL. The NLRP3 inflammasome and COVID-19: Activation, pathogenesis and therapeutic strategies. Cytokine Growth Factor Reviews. 2021;61:2-15. doi:10.1016/j.cytogfr.2021.06.002
  • 88. Satis H, Ozger HS, Aysert Yildiz P, Hizel K, Gulbahar O et al. Prognostic value of interleukin-18 and its association with other inflammatory markers and disease severity in COVID-19. Cytokine. 2021;137:155302. doi:10.1016/j.cyto.2020.155302
  • 89. Opal SM, Fisher CJ, Jr., Dhainaut JF, Vincent JL, Brase R et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebocontrolled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Critical Care Medicine. 1997;25(7):1115-1124. doi:10.1097/00003246-199707000- 00010
  • 90. Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatology. 2020;2(6):e325-e331. doi:10.1016/S2665- 9913(20)30127-2
  • 91. The CORIMUNO-19 Collaborative group. Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respiratory Medicine. 2021;9(3):295-304. doi:10.1016/S2213-2600(20)30556-7
  • 92. Kyriazopoulou E, Huet T, Cavalli G, Gori A, Kyprianou M et al. Effect of anakinra on mortality in patients with COVID-19: a systematic review and patient-level meta-analysis. Lancet Rheumatology. 2021;3(10):e690-e697. doi:10.1016/S2665- 9913(21)00216-2
  • 93. Kyriazopoulou E, Panagopoulos P, Metallidis S, Dalekos GN, Poulakou G et al. An open label trial of anakinra to prevent respiratory failure in COVID-19. Elife. 2021;10. doi:10.7554/ eLife.66125
  • 94. Kyriazopoulou E, Poulakou G, Milionis H, Metallidis S, Adamis G et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial. Nature Medicine: 2021. doi:10.1038/s41591-021-01499-z
  • 95. Caricchio R, Abbate A, Gordeev I, Meng J, Hsue PY et al. Effect of Canakinumab vs Placebo on Survival Without Invasive Mechanical Ventilation in Patients Hospitalized With Severe COVID-19: A Randomized Clinical Trial. Journal of the American Medical Association. 2021;326(3):230-239. doi:10.1001/jama.2021.9508
  • 96. Deftereos SG, Siasos G, Giannopoulos G, Vrachatis DA, Angelidis C et al. The GReek study in the Effects of Colchicine in COvid-19 complications prevention (GRECCO-19 study): rationale and study design. Hellenic Journal of Cardiology. 2020;61:42-45. doi:10.1016/j.hjc.2020.03.002
  • 97. Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. New England Journal of Medicine. 2019;381(26):2497-2505. doi:10.1056/NEJMoa1912388
  • 98. Lopes MI, Bonjorno LP, Giannini MC, Amaral NB, Menezes PI et al. Beneficial effects of colchicine for moderate to severe COVID-19: a randomised, double-blinded, placebocontrolled clinical trial. RMD Open. 2021;7(1). doi:10.1136/ rmdopen-2020-001455
  • 99. Tardif JC, Bouabdallaoui N, L’Allier PL, Gaudet D, Shah B et al. Colchicine for community-treated patients with COVID-19 (COLCORONA): a phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial. Lancet Respiratory Medicine. 2021;9(8):924-932. doi:10.1016/S2213- 2600(21)00222-8
  • 100. RECOVERY Collaborative Group. Colchicine in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet Respiratory Medicine. 2021; 9(12):1419-1426. doi:10.1016/ S2213-2600(21)00435-5
  • 101. Lien C H, Lee MD, Weng S L, Lin CH, Liu LY et al. Repurposing Colchicine in Treating Patients with COVID-19: A Systematic Review and Meta-Analysis. Life (Basel, Switzerland). 2021; 11(8): 864. https://doi.org/10.3390/life11080864
  • 102. Madrid-Garcia A, Perez I, Colomer JI, Leon-Mateos L, Jover JA et al. Influence of colchicine prescription in COVID-19-related hospital admissions: a survival analysis. Therapeutic Advances in Musculoskeletal Disease. 2021;13:1759720X211002684. doi:10.1177/1759720X211002684
  • 103. Kharouf F, Ishay Y, Kenig A, Bitan M, Ben-Chetrit E. Incidence and course of COVID-19 hospitalizations among patients with familial Mediterranean fever. Rheumatology (Oxford). 2021. doi:10.1093/rheumatology/keab577
  • 104. Satis H, Armagan B, Bodakci E, Atas N, Sari A et al. Colchicine intolerance in FMF patients and primary obstacles for optimal dosing. Turkish Journal of Medical Sciences. 2020;50(5):1337- 1343. doi:10.3906/sag-2001-261
  • 105. Haga S, Yamamoto N, Nakai-Murakami C, Osawa Y, Tokunaga K et al. Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNFalpha production and facilitates viral entry. Proceedings of the National Academy of Sciences. 2008;105(22):7809-7814. doi:10.1073/pnas.0711241105
  • 106. Robinson PC, Liew DFL, Liew JW, Monaco C, Richards D et al. The Potential for Repurposing Anti-TNF as a Therapy for the Treatment of COVID-19. Med (N Y). 2020; 1(1):90-102. doi: 10.1016/j.medj.2020.11.005.
  • 107. Feldmann M, Maini RN, Woody JN, Holgate ST, Winter G et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. The Lancet. 2020. doi:10.1016/S0140- 6736(20)30858-8
  • 108. Kridin K, Schonmann Y, Solomon A, Damiani G, Tzur Bitan D et al. Risk of COVID-19 Infection, Hospitalization, and Mortality in Patients with Psoriasis Treated by Interleukin-17 Inhibitors. Journal of Dermatological Treatment. 2021:1-28. do i:10.1080/09546634.2021.1905766
  • 109. Avdeev SN, Trushenko NV, Tsareva NA, Yaroshetskiy AI, Merzhoeva ZM et al. Anti-IL-17 monoclonal antibodies in hospitalized patients with severe COVID-19: A pilot study. Cytokine. 2021;146:155627. doi:10.1016/j.cyto.2021.155627
  • 110. Crotti C, Biggioggero M, Becciolini A, Agape E, Favalli EG. Mavrilimumab: a unique insight and update on the current status in the treatment of rheumatoid arthritis. Expert Opinion on Investigational Drugs. 2019;28(7):573-581. doi:10.1080/135 43784.2019.1631795
  • 111. Cremer PC, Abbate A, Hudock K, McWilliams C, Mehta J et al. Mavrilimumab in patients with severe COVID-19 pneumonia and systemic hyperinflammation (MASHCOVID): an investigator initiated, multicentre, double-blind, randomised, placebo-controlled trial. Lancet Rheumatology. 2021;3(6):e410-e418. doi:10.1016/S2665-9913(21)00070-9
  • 112. Temesgen Z, Burger CD, Baker J, Polk C, Libertin C et al. Lenzilumab Efficacy and Safety in Newly Hospitalized Covid-19 Subjects: Results from the Live-Air Phase 3 Randomized Double-Blind Placebo-Controlled Trial. medRxiv. 2021. doi:10.1101/2021.05.01.21256470