COVID-19 and Sepsis

COVID-19 and Sepsis

Abstract: The COVID-19 pandemic has created a major alteration in the medical literature including the sepsis discussion. From the outset of the pandemic, various reports have indicated that although there are some unique features pertinent to COVID-19, many of its acute manifestations are similar to sepsis caused by other pathogens. As a consequence, the old definitions now require consideration of this new etiologic agent, namely SARS-CoV-2. Although the pathogenesis of COVID-19 has not been fully explained, the data obtained so far in hospitalized patients has revealed that serum cytokine and chemokine levels are high in severe COVID-19 patients, similar to those found with sepsis. COVID-19 may involve multiple organ systems. In addition to the lungs, the virus has been isolated from blood, urine, faeces, liver, and gallbladder. Results from autopsy series in COVID-19 patients have demonstrated a wide range of findings, including vascular involvement, congestion, consolidation, and hemorrhage as well as diffuse alveolar damage in lung tissue consistent with acute respiratory distress syndrome (ARDS). The presence of viral cytopathic-like changes, infiltration of inflammatory cells (mononuclear cells and macrophages), and viral particles in histopathological samples are considered a consequence of both direct viral infection and immune hyperactivation. Thromboembolism and hyper-coagulopathy are other components in the pathogenesis of severe COVID-19. Although the pathogenesis of hypercoagulability is not fully understood, it has been pointed out that all three components of Virchow’s triad (endothelial injury, stasis, and hypercoagulable state) play a major role in contributing to clot formation in severe COVID-19 infection. In severe COVID-19 cases, laboratory parameters such as hematological findings, coagulation tests, liver function tests, D-dimer, ferritin, and acute phase reactants such as CRP show marked alterations, which are suggestive of a cytokine storm. Another key element of COVID-19 pathogenesis in severe cases is its similarity or association with hemophagocytic lymphohistiocytosis (HLH). SARS-CoV-2 induced cytokine storm has significant clinical and laboratory findings overlapping with HLH. Viral sepsis has some similarities but also some differences when compared to bacterial sepsis. In bacterial sepsis, systemic inflammation affecting multiple organs is more dominant than in COVID-19 sepsis. While bacterial sepsis causes an early and sudden onset clinical deterioration, viral diseases may exhibit a relatively late onset and chronic course. Consideration of severe COVID-19 disease as a sepsis syndrome has relevance and may assist in terms of determining treatments that will modulate the immune response, limit intrinsic damage to tissue and organs, and potentially improve outcome.Key words: COVID-19, sepsis, multiorgan failure, dysregulated immune response, hyperinflammation, cytokine storm

___

  • 1. Genga KR, Russell JA. Update of Sepsis in the Intensive Care Unit. Journal of Innate Immunity 2017; 9(5): 441-455. doi: 10.1159/000477419
  • 2. Perner A, Gordon AC, De Backer D, Dimopoulos G, Russell JA, et al. Sepsis: frontiers in diagnosis, resuscitation and antibiotic therapy. Intensive Care Med. 2016 Dec;42(12):1958-1969. doi: 10.1007/s00134-016-4577-z.
  • 3. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Critical Care Medicine 1992; 20(6): 864-874.
  • 4. Rello J, Valenzuela-Sánchez F, Ruiz-Rodriguez M, Moyano S. Sepsis: A Review of Advances in Management. Advances in Therapy 2017; 34(11): 2393-2411. doi: 10.1007/s12325-017- 0622-8
  • 5. Faix JD. Biomarkers of sepsis. Critical Reviews in Clinical Laboratory Sciences 2013; 50(1): 23-36. doi: 10.3109/10408363.2013.764490
  • 6. Huang C, Wang Y, Li X, Huang C, Wang Y et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506. doi: 10.1016/S0140- 6736(20)30183-5
  • 7. Liu J, Li S, Liu J, Liang B, Wang X et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020; 55: 102763. doi: 10.1016/j. ebiom.2020.102763
  • 8. Satış H, Özger HS, Aysert Yıldız P, Hızel K, Gulbahar Ö et al. Prognostic value of interleukin-18 and its association with other inflammatory markers and disease severity in COVID-19. Cytokine 2021; 137: 155302. doi: 10.1016/j.cyto.2020.155302
  • 9. Bellinvia S, Edwards CJ, Schisano M, Banfi P, Fallico M, Murabito P. The unleashing of the immune system in COVID-19 and sepsis: the calm before the storm? Inflammation Research 2020; 69(8): 757-763. doi: 10.1007/s00011-020-01366-6
  • 10. Li H, Liu L, Zhang D, Xu J, Dai H et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet 2020; 395(10235): 1517-1520. doi: 10.1016/S0140-6736(20)30920-X
  • 11. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Journal of American Medical Association 2016; 315(8): 801-810. doi: 10.1001/ jama.2016.0287
  • 12. Liu V, Escobar GJ, Greene JD, Soule J, Whippy A et al. Hospital deaths in patients with sepsis from 2 independent cohorts. Journal of American Medical Association 2014; 312(1): 90-2. doi: 10.1001/jama.2014.5804
  • 13. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Medicine 2017; 43(3): 304-377. doi: 10.1007/s00134-017-4683-6
  • 14. Riedel S, Melendez JH, An AT, Rosenbaum JE, Zenilman JM. Procalcitonin as a marker for the detection of bacteremia and sepsis in the emergency department. American Journal of Clinical Pathology 2011; 135(2): 182-189. doi: 10.1309/AJCP1MFYINQLECV2.
  • 15. Lin GL, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and Immune Pathogenesis of Viral Sepsis. Frontiers in Immunology 2018; 9: 2147. doi: 10.3389/fimmu.2018.02147
  • 16. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A et al and EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. Journal of American Medical Association 2009; 302(21): 2323- 2329. doi: 10.1001/jama.2009.1754
  • 17. Zahar JR, Timsit JF, Garrouste-Orgeas M, Français A, Vesin A et al. Outcomes in severe sepsis and patients with septic shock: pathogen species and infection sites are not associated with mortality. Critical Care Medicine 2011; 39(8): 1886-1895. doi: 10.1097/CCM.0b013e31821b827c. Erratum in: Critical Care Medicine 2011; 39(10): 2392. Vesim, Aurélien [corrected to Vesin, Aurélien].
  • 18. Southeast Asia Infectious Disease Clinical Research Network. Causes and outcomes of sepsis in southeast Asia: a multinational multicentre cross-sectional study. The Lancet Global Health 2017; 5(2): e157-e167. doi: 10.1016/S2214-109X(17)30007-4
  • 19. Gu X, Zhou F, Wang Y, Fan G, Cao B. Respiratory viral sepsis: epidemiology, pathophysiology, diagnosis and treatment. The European Respiratory Review 2020; 29(157): 200038. doi: 10.1183/16000617.0038-2020
  • 20. Ljungström LR, Jacobsson G, Claesson BEB, Andersson R, Enroth H. Respiratory viral infections are underdiagnosed in patients with suspected sepsis. European Journal of Clinical Microbiology & Infectious Diseases 2017; 36(10): 1767-1776. doi: 10.1007/s10096-017-2990-z
  • 21. Hasanoglu I, Korukluoglu G, Asilturk D, Cosgun Y, Kalem AK et al. Higher viral loads in asymptomatic COVID-19 patients might be the invisible part of the iceberg. Infection. 2021; 49(1): 117-126. doi: 10.1007/s15010-020-01548-8
  • 22. Remmelink M, De Mendonça R, D’Haene N, De Clercq S, Verocq C et al. Unspecific post-mortem findings despite multiorgan viral spread in COVID-19 patients. Critical Care 2020; 24(1): 495. doi: 10.1186/s13054-020-03218-5
  • 23. Shang J, Wan Y, Luo C, Ye G, Geng Q et al. Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America 2020; 117(21):11727- 11734. doi: 10.1073/pnas.2003138117
  • 24. Zhou P, Yang XL, Wang XG, Hu B, Zhang L et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-273. doi: 10.1038/s41586- 020-2012-7
  • 25. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181(2): 271-280.e8.
  • 26. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367(6485):1444-1448. doi: 10.1126/science. abb2762
  • 27. Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012; 4(6):1011-1033. doi: 10.3390/v4061011
  • 28. Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses 2012; 4(4): 557-580. doi: 10.3390/v4040557
  • 29. Cai Q, Huang D, Yu H, Zhu Z, Xia Z et al. COVID-19: Abnormal liver function tests. Journal of Hepatology 2020; 73(3): 566-574. doi: 10.1016/j.jhep.2020.04.006
  • 30. Patil M, Singh S, Henderson J, Krishnamurthy P. Mechanisms of COVID-19-induced cardiovascular disease: Is sepsis or exosome the missing link? Journal of Cellular Physiology 2021; 236(5): 3366-3382. doi: 10.1002/jcp.30109
  • 31. Calabrese F, Pezzuto F, Fortarezza F, Hofman P, Kern I et al. Pulmonary pathology and COVID-19: lessons from autopsy. The experience of European Pulmonary Pathologists. Virchows Archiv 2020; 477(3): 359-372. doi: 10.1007/s00428-020-02886-6
  • 32. Hu B, Huang S, Yin L. The cytokine storm and COVID-19. Journal of Mededical Virology 2021; 93(1): 250-256. doi: 10.1002/jmv.26232
  • 33. Tjendra Y, Al Mana AF, Espejo AP, Akgun Y, Millan NC et al. Predicting Disease Severity and Outcome in COVID-19 Patients: A Review of Multiple Biomarkers. Archives of Pathology & Laboratory Medicine 2020; 144(12): 1465- 1474. doi: 10.5858/arpa.2020-0471-SA
  • 34. Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M et al and CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Medicine 2020; 46(6): 1089-1098. doi: 10.1007/s00134-020-06062-x
  • 35. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research 2020; 191:145-147. doi: 10.1016/j. thromres.2020.04.013
  • 36. Panigada M, Bottino N, Tagliabue P, Grasselli G, Novembrino C et al. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. Journal of Thrombosis and Haemostasis 2020;18(7):1738-1742. doi: 10.1111/jth.14850
  • 37. Lowenstein CJ, Solomon SD. Severe COVID-19 Is a Microvascular Disease. Circulation 2020; 142(17):1609-1611. doi: 10.1161/CIRCULATIONAHA.120.050354
  • 38. Soy M, Atagündüz P, Atagündüz I, Sucak GT. Hemophagocytic lymphohistiocytosis: a review inspired by the COVID-19 pandemic. Rheumatology International 2021; 41(1):7-18. doi: 10.1007/s00296-020-04636-y
  • 39. Wu Z, McGoogan JM. Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Journal of American Medical Association 2020;10.1001/jama.2020.2648.
  • 40. Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clinical Rheumatolology 2020; 39(7):2085-2094. doi: 10.1007/s10067- 020-05190-5
  • 41. Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine & Growth Factor Review 2020;53:66-70. doi: 10.1016/j.cytogfr.2020.05.002
  • 42. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Seminars in Immunopathology 2017; 39(5):517-528. doi: 10.1007/s00281-017-0639-8
  • 43. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. Journal of Infection 2020; 80(6): 607-613. doi: 10.1016/j.jinf.2020.03.037
  • 44. Güner R, Hasanoğlu İ, Kayaaslan B, Aypak A, Kaya Kalem A et al. COVID-19 experience of the major pandemic response center in the capital: results of the pandemic’s first month in Turkey. Turkish Journal of Medical Science 2020; 50(8): 1801- 1809. doi: 10.3906/sag-2006-164
  • 45. Qin C, Zhou L, Hu Z, Zhang S, Yang S et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clinical Infectious Disease 2020; 71(15): 762-768. doi: 10.1093/cid/ciaa248
  • 46. McGonagle D, Sharif K, O’Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmunity Reviews 2020; 19(6): 102537. doi: 10.1016/j.autrev.2020.102537
  • 47. Feng Y, Ling Y, Bai T, Xie Y, Huang J et al. COVID-19 with Different Severities: A Multicenter Study of Clinical Features. American Journal of Respiratory and Critical Care Medicine 2020; 201(11): 1380-1388. doi: 10.1164/rccm.202002-0445OC
  • 48. Prescott HC, Girard TD. Recovery From Severe COVID-19: Leveraging the Lessons of Survival From Sepsis. Journal of American Medical Association 2020; 324(8): 739-740. doi: 10.1001/jama.2020.14103
  • 49. Lin HY. The severe COVID-19: A sepsis induced by viral infection? And its immunomodulatory therapy. Chinese Journal of Traumatology 2020; 23(4): 190-195. doi: 10.1016/j. cjtee.2020.06.002
  • 50. Kellum JA, Nadim MK, Forni LG. Sepsis-associated acute kidney injury: is COVID-19 different? Kidney International 2020; 98(6):1370-1372. doi: 10.1016/j.kint.2020.08.009
  • 51. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. New England Journal of Medicine 2003; 348(16):1546-1554. doi: 10.1056/NEJMoa022139
  • 52. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Metaanalysis. Journal of American Medical Association 2020; 324(13): 1330-1341. doi: 10.1001/jama.2020.17023
  • 53. Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Medicine 2020; 46(5):854-887. doi: 10.1007/ s00134-020-06022-5
  • 54. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. Journal of American Medical Association 2020; 324(8): 782-793. doi: 10.1001/jama.2020.12839
  • 55. Mammen MJ, Aryal K, Alhazzani W, Alexander PE. Corticosteroids for patients with acute respiratory distress syndrome: a systematic review and meta-analysis of randomized trials. Polish Archives of Internal Medicine 2020;130(4): 276-286. doi: 10.20452/pamw.15239
  • 56. RECOVERY Collaborative Group, Horby P, Lim WS et al. Dexamethasone in hospitalized patients with COVID-19— preliminary report. The New England Journal of Medicine 2021; 384(8): 693-704. doi: 10.1056/NEJMoa2021436
  • 57. Rochwerg B, Siemieniuk RA, Agoritsas T, Lamontagne F, Askie L et al. A living WHO guideline on drugs for covid-19. British Medical Journal 2020; 370:m3379. doi: 10.1136/bmj.m3379. Update in: British Medical Journal 2020; 371: m4475. Update in: British Medical Journal 2021; 372: n860
  • 58. Tufan A, Avanoğlu Güler A, Matucci-Cerinic M. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turkish Journal of Medical Science 2020; 50(SI-1): 620-632. doi: 10.3906/sag-2004-168
  • 59. RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomized, controlled, open-label, platform trial. Lancet 2021; 397(10285):1637-1645. doi: 10.1016/S0140-6736(21)00676-0
  • 60. REMAP-CAP Investigators, Gordon AC, Mouncey PR, AlBeidh F, Rowan KM et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. New England Journal of Medicine 2021; 384(16): 1491-1502. doi: 10.1056/ NEJMoa2100433
  • 61. Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatology 2020; 2(6): e325-e331. doi: 10.1016/S2665- 9913(20)30127-2
  • 62. Pontali E, Volpi S, Antonucci G, Castellaneta M, Buzzi D et al. Safety and efficacy of early high-dose IV anakinra in severe COVID-19 lung disease. Journal of Allergy and Clinical Immunology 2020; 146(1): 213-215. doi: 10.1016/j. jaci.2020.05.002
  • 63. Huet T, Beaussier H, Voisin O, Jouveshomme S, Dauriat G et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatology 2020; 2(7): e393-e400. doi: 10.1016/ S2665-9913(20)30164-8
  • 64. Bronte V, Ugel S, Tinazzi E, Vella A, De Sanctis F et al. Baricitinib restrains the immune dysregulation in patients with severe COVID-19. Journal of Clinical Investigation 2020; 130(12): 6409-6416. doi: 10.1172/JCI141772
  • 65. Moores LK, Tritschler T, Brosnahan S, Carrier M, Collen JF et al. Prevention, Diagnosis, and Treatment of VTE in Patients With Coronavirus Disease 2019: CHEST Guideline and Expert Panel Report. Chest 2020; 158(3): 1143-1163. doi: 10.1016/j. chest.2020.05.559.
  • 66. Cuker A, Tseng EK, Nieuwlaat R, Angchaisuksiri P, Blair C, et al. American Society of Hematology 2021 guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19. Blood Advences 2021; 5(3): 872-888. doi: 10.1182/ bloodadvances.2020003763.
  • 67. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I et al and Global COVID-19 Thrombosis Collaborative Group, Endorsed by the ISTH, NATF, ESVM, and the IUA, Supported by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-theArt Review. Journals of the American College of Cardiology 2020; 75(23):2950-2973. doi: 10.1016/j.jacc.2020.04.031
  • 68. Contou D, Claudinon A, Pajot O, Micaëlo M, Longuet Flandre P et al. Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Annals of Intensive Care. 2020; 10(1):119. doi: 10.1186/s13613-020- 00736-x
  • 69. Zhu X, Ge Y, Wu T, Zhao K, Chen Y, et al. Co-infection with respiratory pathogens among COVID-2019 cases. Virus Research 2020; 285:198005. doi: 10.1016/j.virusres.2020.198005
  • 70. Nori P, Cowman K, Chen V, Bartash R, Szymczak W et al. Bacterial and fungal coinfections in COVID-19 patients hospitalized during the New York City pandemic surge. Infection Control and Hosp Epidemiology 2021; 42(1):84-88. doi: 10.1017/ice.2020.368
  • 71. Arshad M, Mahmood SF, Khan M, Hasan R. Covid -19, misinformation, and antimicrobial resistance. British Medical Journal 2020; 371:m4501. doi: 10.1136/bmj.m4501
  • 72. Swol J, Lorusso R. Additive treatment considerations in COVID-19-The clinician’s perspective on extracorporeal adjunctive purification techniques. Artificial Organs 2020 Sep;44(9):918-925. doi: 10.1111/aor.13748
  • 73. Chen G, Zhou Y, Ma J, Xia P, Qin Y, Li X. Is there a role for blood purification therapies targeting cytokine storm syndrome in critically severe COVID-19 patients? Renal Failure 2020; 42(1): 483-488. doi: 10.1080/0886022X.2020.1764369