Achievements of the COVID-19 Turkey Platform in vaccine and drug development with an approach of “co-creation and succeeding together”

Achievements of the COVID-19 Turkey Platform in vaccine and drug development with an approach of “co-creation and succeeding together”

Abstract: Mobilizing the research ecosystem for accelerating vaccine and drug development has been an important reality of the pandemic. This article reviews the scientific advances that are attained by the COVID-19 Turkey Platform for vaccine and drug development against the SARS-CoV-2 virus. The platform that is coordinated by the Scientific and Technological Research Council of Turkey is established with a “co-creation and succeeding together” approach, which involves 436 researchers across 49 different institutions working on 17 vaccine and drug development projects in total. Recent advances of the COVID-19 Turkey Platform include the fourth virus-like particle-based vaccine candidate in the world to enter clinical studies based on the World Health Organization COVID-19 vaccine tracker that is currently completing phase 2 clinical studies on the path towards initiating phase 3 clinical studies. Moreover, an adjuvanted inactivated vaccine candidate and two drug candidates that have been identified through the virtual scanning of more than 20,000 molecules are currently in clinical studies. Other vaccines and drug candidates involve additional innovative aspects, and a locally synthesized drug is found to have an impact on COVID-19. This review article discusses the advances that are achieved by the COVID-19 Turkey Platform from the ecosystem perspective, emphasizing the important scientific advances that have been achieved in the field of medical sciences.Key words: Vaccine, drug, COVID-19, SARS-CoV-2, co-creation

___

  • 1. WHO (2020). WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. Available at: https://www.who.int/director-general/speeches/detail/whodirector-general-s-opening-remarks-at-the-media-briefingon-covid-19---11-march-2020.
  • 2. Ministry of Industry and Technology (2021). COVID-19 Turkey Platform. Available at: https://www.sanayi.gov.tr/ covid-19/asi-ilac-ve-tani-calismalari#kovid-19-turkiyeplatformu.
  • 3. Mandal, H. (2020). Mobilizing the research ecosystem for scientific advances towards positive impact in the context of the COVID-19 Pandemic. Turkish J. Med. Sci. 50, 485–488. Available at: 10.3906/sag-2004-180.
  • 4. Mandal, H. (2020). R&D and Innovation Approaches in the Postpandemic Period. In Reflections on the Pandemic in the Future of the World (Ankara: Turkish Academy of Sciences). Available at: http://www.tuba.gov.tr/tr/haberler/akademidenhaberler/reflections-on-the-pandemic-in-the-future-of-theworld-kitabi-tuba-tarafindan-yayimlandi.
  • 5. TÜBİTAK (2020). COVID-19 Türkiye Platformu Aşı ve İlaç Geliştirme Sanal Konferansı Düzenledi. Available at: https:// covid19.tubitak.gov.tr/duyurular/covid-19-turkiye-platformuasi-ve-ilac-gelistirme-sanal-konferansi-duzenledi.
  • 6. TÜBİTAK (2020). COVID-19 Türkiye Platformu Aşı ve İlaç Sanal Konferansı. Available at: https://covid19.tubitak.gov.tr/ arastirmalar/covid-19-turkiye-platformu-asi-ve-ilac-sanalkonferansi.
  • 7. TÜBİTAK (2020). COVID-19 Data Portal Turkey. Available at: https://covid19.tubitak.gov.tr/en.
  • 8. EC (2020). COVID-19 Data Portal. Available at: https://www. covid19dataportal.org/.
  • 9. Forni, G., Mantovani, A., Forni, G., Mantovani, A., Moretta, L., Rappuoli, R., Rezza, G., Bagnasco, A., Barsacchi, G., Bussolati, G., et al. (2021). COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ. 28, 626–639. Available at: https://doi.org/10.1038/s41418-020-00720-9.
  • 10. WHO (2021). COVID-19 Vaccine Tracker and Landscape. Available at: https://www.who.int/publications/m/item/draftlandscape-of-covid-19-candidate-vaccines.
  • 11. Kyriakidis, N.C., López-Cortés, A., González, E.V., Grimaldos, A.B., and Prado, E.O. (2021). SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. npj Vaccines 6, 28. Available at: https://doi.org/10.1038/s41541-021-00292-w.
  • 12. Klinman, D.M., Currie, D., Gursel, I., and Verthelyi, D. (2004). Use of CpG oligodeoxynucleotides as immune adjuvants. Immunol. Rev. 199, 201–216.
  • 13. Klinman, D.M., Klaschik, S., Sato, T., and Tross, D. (2009). CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases. Adv. Drug Deliv. Rev. 61, 248–255.
  • 14. Bode, C., Zhao, G., Steinhagen, F., Kinjo, T., and Klinman, D.M. (2011). CpG DNA as a vaccine adjuvant. Expert Rev. Vaccines 10, 499–511. Available at: https://pubmed.ncbi.nlm. nih.gov/21506647.
  • 15. ClinicalTrials (2021). Study of a Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2) Virus-like Particle (VLP) Vaccine in Healthy Adults (COVID-19). Available at: https:// clinicaltrials.gov/ct2/show/NCT04818281?cond=NCT048182 81&draw=2&rank=1.
  • 16. Anadolu Agency (2021). Minister Varank volunteered in the first human trials of the domestic COVID-19 vaccine candidate. Available at: https://www.aa.com.tr/tr/koronavirus/bakanvarank-yerli-kovid-19-asi-adayinin-ilk-insan-denemelerindegonullu-oldu/2212357.
  • 17. TÜBİTAK (2021). Vaccine Based on Virus-Like Particles (VLP) Started to be Administered to Volunteers in Phase 2! Available at: https://tubitak.gov.tr/tr/haber/virus-benzeri-parcaciklaravlp-dayali-asi-faz-2-asamasinda-gonullulere-uygulanmayabaslandi.
  • 18. ClinicalTrials (2021). Study of a Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Virus-like Particle (VLP) Vaccine (COVID-19). Available at: https://clinicaltrials. gov/ct2/show/NCT04962893.
  • 19. ClinicalTrials (2020). Study of a Recombinant CoronavirusLike Particle COVID-19 Vaccine in Adults. Available at: https://clinicaltrials.gov/ct2/show/NCT04636697.
  • 20. ClinicalTrials (2021). Study of a Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) Adjuvanted Inactivated Vaccine in Healthy Adults (COVID-19). Available at: https://www.clinicaltrials.gov/ct2/show/NCT04866069.
  • 21. Ura, T., Yamashita, A., Mizuki, N., Okuda, K., and Shimada, M. (2021). New vaccine production platforms used in developing SARS-CoV-2 vaccine candidates. Vaccine 39, 197–201. Available at: https://www.sciencedirect.com/science/article/ pii/S0264410X20315073.
  • 22. Frenck, R.W., Klein, N.P., Kitchin, N., Gurtman, A., Absalon, J., Lockhart, S., Perez, J.L., Walter, E.B., Senders, S., Bailey, R., et al. (2021). Safety, Immunogenicity, and Efficacy of the BNT162b2 Covid-19 Vaccine in Adolescents. N. Engl. J. Med. 385, 239– 250. Available at: https://doi.org/10.1056/NEJMoa2107456.
  • 23. Adkins, J.C., and Wagstaff, A.J. (1998). Recombinant hepatitis B vaccine: a review of its immunogenicity and protective efficacy against hepatitis B. BioDrugs 10, 137–158.
  • 24. Sahillioğlu, A.C., and Özören, N. (2015). Artificial Loading of ASC Specks with Cytosolic Antigens. PLoS One 10, e0134912. Available at: https://dx.plos.org/10.1371/journal.pone.0134912 [Accessed July 30, 2021].
  • 25. Boutron, I., Chaimani, A., Meerpohl, J.J., Hróbjartsson, A., Devane, D., Rada, G., Tovey, D., Grasselli, G., and Ravaud, P. (2020). The COVID-NMA Project: Building an Evidence Ecosystem for the COVID-19 Pandemic. Ann. Intern. Med. 173, 1015–1017. Available at: https://doi.org/10.7326/M20- 5261.
  • 26. WHO-Cochrane (2021). Covid-19 Living NMA Initiative. Available at: https://covid-nma.com/dataviz/. 27. ClinicalTrials (2021). Efficacy and Safety of Favipiravir
  • and Ribavirin Formulation for Treatment of COVID-19 (COVID-19). Available at: https://clinicaltrials.gov/ct2/show/ NCT04828564.
  • 28. Unal, M.A., Bitirim, C.V., Summak, G.Y., Bereketoglu, S., Cevher Zeytin, I., Besbinar, O., Gurcan, C., Aydos, D., Goksoy, E., Kocakaya, E., et al. (2021). Ribavirin shows antiviral activity against SARS-CoV-2 and downregulates the activity of TMPRSS2 and the expression of ACE2 in vitro. Can. J. Physiol. Pharmacol. 99, 449–460. Available at: https://doi.org/10.1139/ cjpp-2020-0734.
  • 29. Durdagi, S., Avsar, T., Orhan, M.D., Serhatli, M., Balcioglu, B.K., Ozturk, H.U., Kayabolen, A., Cetin, Y., Aydinlik, S., Bagci-Onder, T., et al. (2020). The neutralization effect of Montelukast on SARS-CoV-2 is shown by multiscale in silico simulations and combined in vitro studies. bioRxiv, 2020.12.26.424423. Available at: http://biorxiv.org/content/ early/2020/12/27/2020.12.26.424423.abstract.
  • 30. Dogan, B., and Durdagi, S. (2021). Drug Re-positioning Studies for Novel HIV-1 Inhibitors Using Binary QSAR Models and Multi-target-driven In Silico Studies. Mol. Inform. 40, 2000012. Available at: https://doi.org/10.1002/minf.202000012.
  • 31. ClinicalTrials (2021). Investigation the Effect of Montelukast in COVID-19. Available at: https://clinicaltrials.gov/ct2/show/ NCT04718285.
  • 32. Mani, J.S., Johnson, J.B., Steel, J.C., Broszczak, D.A., Neilsen, P.M., Walsh, K.B., and Naiker, M. (2020). Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res. 284, 197989. Available at: https://www.sciencedirect.com/science/article/pii/ S0168170220303269.
  • 33. Başaran, S., Şimşek-Yavuz, S., Meşe, S., Çağatay, A., Medetalibeyoğlu, A., Öncül, O., Özsüt, H., Ağaçfidan, A., Gül, A., and Eraksoy, H. (2021). The effect of tocilizumab, anakinra and prednisolone on antibody response to SARS-CoV-2 in patients with COVID-19: A prospective cohort study with multivariate analysis of factors affecting the antibody response. Int. J. Infect. Dis. 105, 756–762. Available at: https://doi. org/10.1016/j.ijid.2021.03.031.
  • 34. Tufan, A., Avanoğlu Güler, A., and Matucci-Cerinic, M. (2020). Covid-19, immune system response, hyperinflammation and repurposinantirheumatic drugs. Turkish J. Med. Sci. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85083739785&doi=10.3906%2Fsag-2004-168&partnerID=40 &md5=25cddf83bdc7768d1df8158977632534.
  • 35. Şimşek Yavuz, S., and Ünal, S. (2020). Antiviral treatment of covid-19. Turkish J. Med. Sci. Available at: https:// www.scopus.com/inward/record.uri?eid=2-s2.0- 85083744853&doi=10.3906%2Fsag-2004-145&partnerID=40 &md5=17991c535e9f9327c1e13c6299a51e9b.
  • 36. Bulut, C., and Kato, Y. (2020). Epidemiology of covid-19. Turkish J. Med. Sci. Available at: https://www.scopus.com/inward/ record.uri?eid=2-s2.0-85083717614&doi=10.3906%2Fsag2004-172&partnerID=40&md5=edfd29429bd3d3c1cb4de395 fbcbe968.
  • 37. Güner, R., Hasanoğlu, İ., and Aktaş, F. (2020). Covid-19: Prevention and control measures in community. Turkish J. Med. Sci. Available at: https://www.scopus.com/inward/ record.uri?eid=2-s2.0-85083719310&doi=10.3906%2Fsag2004-146&partnerID=40&md5=81ac71058d37a25e1e00ef665 4a5a606.
  • 38. Tezer, H., and Bedir Demirdağ, T. (2020). Novel coronavirus disease (Covid-19) in children. Turkish J. Med. Sci. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85083741736&doi=10.3906%2FSAG-2004-174&partnerID=4 0&md5=0e1f941aea0d6ed1e7a103d5805b6a46.
  • 39. Petersen, E., Gökengin, A.D., Al Balushi, A., and Zumla, A. (2021). One and a half years into the COVID-19 pandemic - Exit strategies and efficacy of SARS-CoV-2 vaccines for holistic management and achieving global control. Turkish J. Med. Sci.
  • 40. Candevir, A., Üngör, C., Çizmeci Şenel, F., and Taşova, Y. (2021). How efficient are facial masks against COVID-19? Evaluating the mask use of various communities one year into the pandemic. Turkish J. Med. Sci.
  • 41. Çiftçiler, R., Haznedaroğlu, İ.C., Tufan, A., and Öztürk, M.A. (2021). Covid-19 scientific publications from Turkey. Turkish J. Med. Sci. 51.
  • 42. Sarfraz, A., Sarfraz, Z., Sarfraz, M., Aftab, H., and Pervaiz, Z. (2021). Tocilizumab and COVID-19: a meta-analysis of 2120 patients with severe disease and implications for clinical trial methodologies. Turkish J. Med. Sci. 51, 890–897.
  • 43. Erdem, H.A., Korkma, P.E., Çağlayan, D., Işıkgöz Taşbakan, M., Yamazhan, T., Taşbakan, M.S., Sayıner, A., and Gökengin, D. (2021). Treatment of SARS-CoV-2 pneumonia with favipiravir: early results from the Ege University cohort, Turkey. Turkish J. Med. Sci. 51, 912–920.
  • 44. Ministry of Industry and Technology (2021). Supported Projects in the Field of Diagnosis and Diagnosis Systems. Available at: https://www.sanayi.gov.tr/covid-19/asi-ilacve-tani-calismalari#tani-ve-tani-sistemleri-alanindadesteklenen-projeler.
  • 45. TÜBİTAK UME (2020). Reference Material UME RM 2019. Available at: https://rm.ume.tubitak.gov.tr/urun.aspx?u=55.
  • 46. TÜBİTAK (2021). COVID-19 and Society Conference. Available at: https://tubitak.gov.tr/sites/default/files/ Covid19veToplum/index.php.
  • 47. TÜBİTAK (2021). COVID-19 and Society: Social, Human and Economic Impacts of the Pandemic, Problems and Solutions. Available at: https://tubitak.gov.tr/tr/duyuru/covid-19-vetoplum-salginin-sosyal-beseri-ve-ekonomik-etkileri-bulgularsonuclar-ve-oneriler.
  • 48. Morawska-Jancelewicz, J. (2021). The Role of Universities in Social Innovation Within Quadruple/Quintuple Helix Model: Practical Implications from Polish Experience. J. Knowl. Econ. Available at: https://doi.org/10.1007/s13132-021-00804-y.
  • 49. International Science Council (2021). Strengthening Science Systems Available at: https://council.science/publications/ strengthening-science-systems/.
  • 50. Kılkış, Ş. (2016). Sustainability-oriented innovation system analyses of Brazil, Russia, India, China, South Africa, Turkey and Singapore. J. Clean. Prod. 130, 235–247. Available at: https://www.sciencedirect.com/science/article/pii/ S0959652616302116.
  • 51. International Science Council (2021). Transform21: Global Science Portal. Available at: https://council.science/ transform21/.
  • 52. VOSviewer Online (2021). Available at: https://app.vosviewer. com/.