Epidemiology of COVID-19: What changed in one year?

Epidemiology of COVID-19: What changed in one year?

Abstract: A coronavirus brought the first pandemic attack of this century as a flu virus did a hundred years ago. This greatest pandemic of the century brings us new opportunities to understand and explore the dynamics of a contagious disease. Nearly two years later, we are still collecting the evidence to understand the disease. Some basic epidemiological properties are still urgently needed. Not only the origin of the virus but also Ro value, possible transmission routes, epidemiologic curves, case fatality rates, seasonality, severity and mortality risk factor, effects on the risk groups, differences between countries and so on still require strong evidence prior to making final suggestions. In this review, we tried to evaluate the epidemiological evidence to scrutinize where exactly we are in this pandemic.Key words: COVID-19, epidemiology, pandemic

___

  • 1. Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X et al. Global patterns in coronavirus diversity. Virus Evolution 2017; 3(1):vex012. doi: 10.1093/ve/vex012
  • 2. Zhou H, Ji J, Chen X, Bi Y, Li J et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARSCoV-2 and related viruses. Cell. 2021; 184(17): 4380-4391.e14. doi: 10.1016/j.cell.2021.06.008
  • 3. Holmes EC, Goldstein SA, Rasmussen AL, Robertson DL, CritsChristoph A et al. The origins of SARS-CoV-2: A critical review. Cell 2021; 184(19): 4848-4856. doi: 10.1016/j.cell.2021.08.017
  • 4. Burki T. The origin of SARS-CoV-2. Lancet Infectious Diseases 2020; 20(9): 1018-1019. doi: 10.1016/S1473-3099(20)30641-1
  • 5. Knight D. COVID-19 Pandemic Origins: Bioweapons and the History of Laboratory Leaks. Southern Medical Journal 2021; 114(8): 465-467. doi: 10.14423/SMJ.0000000000001283
  • 6. WHO-convened Global Study of Origins of SARS-CoV-2: China Part. Joint WHO-China study: 14 January- 10 February 2021. Joint Report 30 March 2021. https://www.who.int/ publications/i/item/who-convened-global-study-of-originsof-sars-cov-2-china-part
  • 7. Locatelli I, Trächsel B, Rousson V. Estimating the basic reproduction number for COVID-19 in Western Europe. PLoS One. 2021; 16(3): e0248731. doi: 10.1371/journal.pone.0248731
  • 8. Niu Y, Rui J, Wang Q, Zhang W, Chen Z et al. Containing the Transmission of COVID-19: A Modeling Study in 160 Countries. Frontier Medicine (Lausanne). 2021; 8:701836. doi: 10.3389/fmed.2021.701836
  • 9. Yu CJ, Wang ZX, Xu Y, Hu MX, Chen K et al. Assessment of basic reproductive number for COVID-19 at global level: A metaanalysis. Medicine (Baltimore). 2021; 100(18):e25837. doi: 10.1097/MD.0000000000025837
  • 10. Billah MA, Miah MM, Khan MN. Reproductive number of coronavirus: A systematic review and meta-analysis based on global level evidence. PLoS One. 2020; 15(11):e0242128. doi: 10.1371/journal.pone.0242128
  • 11. Niu Y, Rui J, Wang Q, Zhang W, Chen Z et al. Containing the Transmission of COVID-19: A Modeling Study in 160 Countries. Frontier Medicine (Lausanne). 2021; 8:701836. doi: 10.3389/fmed.2021.701836
  • 12. Wassie GT, Azene AG, Bantie GM, Dessie G, Aragaw AM. Incubation Period of Severe Acute Respiratory Syndrome Novel Coronavirus 2 that Causes Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. Current Therapeutic Research, Clinical and Experimental 2020; 93:100607. doi: 10.1016/j.curtheres.2020.100607
  • 13. Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. Journal of Medical Virology. 2020; 92(6): 568-576. doi: 10.1002/jmv.25748
  • 14. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents 2020; 55(3): 105924. doi: 10.1016/j.ijantimicag.2020.105924
  • 15. Meyerowitz EA, Richterman A, Gandhi RT, Sax PE. Transmission of SARS-CoV-2: A Review of Viral, Host, and Environmental Factors. Annals of Internal Medicine 2021; 174(1): 69-79. doi: 10.7326/M20-5008
  • 16. Greenhalgh T, Jimenez JL, Prather KA, Tufekci Z, Fisman D et al. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet. 2021; 397(10285): 1603-1605. doi: 10.1016/S0140-6736(21)00869-2
  • 17. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A et al. Aerosol and Surface Stability of SARSCoV-2 as Compared with SARS-CoV-1. New England Journal of Medicine 2020; 382(16): 1564-1567. doi: 10.1056/ NEJMc2004973
  • 18. Kanamori H, Weber DJ, Rutala WA. Role of the Healthcare Surface Environment in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Transmission and Potential Control Measures. Clinical Infectious Diseases 2021; 72(11): 2052-2061. doi: 10.1093/cid/ciaa1467
  • 19. Aboubakr HA, Sharafeldin TA, Goyal SM. Stability of SARSCoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound Emerging Diseases. 2021; 68(2): 296-312. doi: 10.1111/tbed.13707
  • 20. Amoah ID, Pillay L, Deepnarian N, Awolusi O, Pillay K et al. Detection of SARS-CoV-2 RNA on contact surfaces within shared sanitation facilities. International Journal of Hygiene and Environmental Health 2021; 236: 113807. doi: 10.1016/j. ijheh.2021.113807
  • 21. Norman M, Navér L, Söderling J, Ahlberg M, Hervius Askling H et al. Association of Maternal SARS-CoV-2 Infection in Pregnancy with Neonatal Outcomes. Journal of the American Medical Association 2021; 325(20): 2076–2086. doi:10.1001/ jama.2021.5775
  • 22. Oliveira KF, Oliveira JF, Wernet M, Paschoini MC, Ruiz MT. Vertical transmission and COVID-19: a scoping review. Revista Brasileira de Enfermagem. 2021; 74(suppl 1):e20200849. English, Portuguese. doi: 10.1590/0034-7167-2020-0849
  • 23. Schwartz D.A., Dhaliwal A. Coronavirus Diseases in Pregnant Women, the Placenta, Fetus, and Neonate. In: Rezaei N. (eds) Coronavirus Disease - COVID-19. Advances in Experimental Medicine and Biology, vol 1318. Springer, Cham. 2021. pp. 223-242
  • 24. Fan C, Lei D, Fang C, Li C, Wang M et al. Perinatal Transmission of 2019 Coronavirus Disease-Associated Severe Acute Respiratory Syndrome Coronavirus 2: Should We Worry? Clinical Infectious Diseases. 2021; 72(5): 862-864. doi: 10.1093/ cid/ciaa226
  • 25. Halici-Ozturk F, Ocal FD, Aydin S, Tanacan A, Ayhan SG et al. Investigating the risk of maternal-fetal transmission of SARSCoV-2 in early pregnancy. Placenta. 2021; 106:25-29. doi: 10.1016/j.placenta.2021.02.006
  • 26. Tolu LB, Ezeh A, Feyissa GT. Vertical transmission of Severe Acute Respiratory Syndrome Coronavirus 2: A scoping review. PLoS One. 2021; 16(4):e0250196. doi: 10.1371/journal. pone.0250196
  • 27. Zhang Y, Chen C, Song Y, Zhu S, Wang D et al. Excretion of SARS-CoV-2 through faecal specimens. Emerging Microbes and Infection 2020; 9(1): 2501-2508. doi: 10.1080/22221751.2020.1844551
  • 28. Cuicchi D, Lazzarotto T, Poggioli G. Fecal-oral transmission of SARS-CoV-2: review of laboratory-confirmed virus in gastrointestinal system. International Journal of Colorectal Disease 2021; 36(3): 437-444. doi: 10.1007/s00384-020-03785-7
  • 29. Dhama K, Patel SK, Yatoo MI, Tiwari R, Sharun K, et al. SARSCoV-2 existence in sewage and wastewater: A global public health concern? Journal of Environmental Management. 2021; 280: 111825. doi: 10.1016/j.jenvman.2020.111825
  • 30. Meng XJ, Liang TJ. SARS-CoV-2 Infection in the Gastrointestinal Tract: Fecal-Oral Route of Transmission for COVID-19? Gastroenterology. 2021; 160(5):1467-1469. doi: 10.1053/j. gastro.2021.01.005
  • 31. Syangtan G, Bista S, Dawadi P, Rayamajhee B, Shrestha LB et al. Asymptomatic SARS-CoV-2 Carriers: A Systematic Review and Meta-Analysis. Frontiers in Public Health 2021; 8:587374. doi: 10.3389/fpubh.2020.587374
  • 32. He J, Guo Y, Mao R, Zhang J. Proportion of asymptomatic coronavirus disease 2019: A systematic review and metaanalysis. Journal of Medical Virology 2021; 93(2): 820-830. doi: 10.1002/jmv.26326
  • 33. Oran DP, Topol EJ. Prevalence of Asymptomatic SARS-CoV-2 Infection : A Narrative Review. Annals of Internal Medicine 2020; 173(5): 362-367. doi: 10.7326/M20-3012
  • 34. Cevik M, Bogoch II, Carson G, D’Ortenzio E, Kuppalli K. Prevalence of Asymptomatic SARS-CoV-2 Infection. Annals of Internal Medicine 2021; 174(2): 283-284. doi: 10.7326/L20- 1283. PMID: 33587875
  • 35. Kronbichler A, Kresse D, Yoon S, Lee KH, Effenberger M et al. Asymptomatic patients as a source of COVID-19 infections: A systematic review and meta-analysis. International Journal of Infectious Diseases 2020; 98: 180-186. doi: 10.1016/j. ijid.2020.06.052
  • 36. Stadler RN, Maurer L, Aguilar-Bultet L, Franzeck F, Ruchti C et al. Systematic screening on admission for SARS-CoV-2 to detect asymptomatic infections. Antimicrobial Resistance and Infection Control 2021; 10(1):44. doi: 10.1186/s13756-021- 00912-z
  • 37. Majra D, Benson J, Pitts J, Stebbing J. SARS-CoV-2 (COVID-19) superspreader events. Journal of Infection. 2021; 82(1): 36-40. doi: 10.1016/j.jinf.2020.11.021
  • 38. Althouse BM, Wenger EA, Miller JC, Scarpino SV, Allard A et al. Superspreading events in the transmission dynamics of SARS-CoV-2: Opportunities for interventions and control. PLoS Biology 2020; 18(11):e3000897. doi: 10.1371/journal. pbio.3000897
  • 39. Siggins MK, Thwaites RS, Openshaw PJM. Durability of Immunity to SARS-CoV-2 and Other Respiratory Viruses. Trends in Microbiology 2021; 29(7): 648-662. doi: 10.1016/j. tim.2021.03.016
  • 40. Cromer D, Juno JA, Khoury D, Reynaldi A, Wheatley AK et al. Prospects for durable immune control of SARS-CoV-2 and prevention of reinfection. Nature Reviews Immunology 2021; 21(6):395-404. doi: 10.1038/s41577-021-00550-x
  • 41. Vitale J, Mumoli N, Clerici P, De Paschale M, Evangelista I et al. Assessment of SARS-CoV-2 Reinfection 1 Year After Primary Infection in a Population in Lombardy, Italy. JAMA Internal Medicine 2021: e212959. doi: 10.1001/ jamainternmed.2021.2959
  • 42. O Murchu E, Byrne P, Carty PG, De Gascun C, Keogan M et al. Quantifying the risk of SARS-CoV-2 reinfection over time. Reviews in Medical Virology 2021:e2260. doi: 10.1002/ rmv.2260
  • 43. Piri SM, Edalatfar M, Shool S, Jalalian MN, Tavakolpour S. A systematic review on the recurrence of SARS-CoV-2 virus: frequency, risk factors, and possible explanations. Infectious Diseases (Lond). 2021; 53(5):315-324. doi: 10.1080/23744235.2020.1871066
  • 44. Abu-Raddad LJ, Chemaitelly H, Malek JA, Ahmed AA, Mohamoud YA et al. Assessment of the risk of SARS-CoV-2 reinfection in an intense re-exposure setting. Clinical Infectious Diseases 2020:ciaa1846. doi: 10.1093/cid/ciaa1846
  • 45. Li Y, Wang X: Nair H. Global Seasonality of Human Seasonal Coronaviruses: A Clue for Postpandemic Circulating Season of Severe Acute Respiratory Syndrome Coronavirus 2? Journal of Infectious Diseases 2020; 222(7):1090-1097. doi: 10.1093/ infdis/jiaa436
  • 46. Scafetta N. Distribution of the SARS-CoV-2 Pandemic and Its Monthly Forecast Based on Seasonal Climate Patterns. International Journal of Environmental Research and Public Health. 2020; 17(10):3493. doi: 10.3390/ijerph 17103493
  • 47. Zheng HL, Guo ZL, Wang ML, Yang C, An SY et al. Effects of climate variables on the transmission of COVID-19: a systematic review of 62 ecological studies. Environmental Science and Pollution Research International 2021:1-18. doi: 10.1007/s11356-021 -15929-5
  • 48. Paraskevis D, Kostaki EG, Alygizakis N, Thomaidis NS, Cartalis C et al. A review of the impact of weather and climate variables to COVID-19: In the absence of public health measures high temperatures cannot probably mitigate outbreaks. The Science of the Total Environonment 2021; 768: 144578. doi: 10.1016/j. scitotenv.2020.144578
  • 49. Dessie ZG, Zewotir T. Mortality-related risk factors of COVID-19: a systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infectious Diseases. 2021; 21(1): 855. doi: 10.1186/s12879-021-06536-3
  • 50. Ssentongo P, Ssentongo AE, Heilbrunn ES, Ba DM, Chinchilli VM. Association of cardiovascular disease and 10 other preexisting comorbidities with COVID-19 mortality: A systematic review and meta-analysis. PLoS One. 2020; 15(8): e0238215. doi: 10.1371/journal.pone.0238215
  • 51. Wu Y, Li H, Zhang Z, Liang W, Zhang T et al. Risk factors for mortality of coronavirus disease 2019 (COVID-19) patients during the early outbreak of COVID-19: a systematic review and meta-analysis. Annals of Palliatiave Medicine 2021; 10(5): 5069-5083. doi: 10.21037/apm-20-2557
  • 52. Thakur B, Dubey P, Benitez J, Torres JP, Reddy S et al. A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID-19. Scientific Reports. 2021; 11(1):8562. doi: 10.1038/s41598-021-88130-w
  • 53. Weiner J, Suwalski P, Holtgrewe M, Rakitko A, Thibeault C et al. Increased risk of severe clinical course of COVID-19 in carriers of HLA-C*04:01. EClinical Medicine. 2021 Sep 2:101099. doi: 10.1016/j.eclinm.2021.101099 Epub ahead of print
  • 54. Shkurnikov M, Nersisyan S, Jankevic T, Galatenko A, Gordeev I et al. Association of HLA Class I Genotypes With Severity of Coronavirus Disease-19. Frontiers in Immunolology 2021; 12:641900. doi: 10.3389/fimmu.2021.641900
  • 55. Xu W, Huang C, Fei L, Li W, Xie X et al. A Novel Prediction Model of COVID-19 Progression: A Retrospective Cohort Study. Infectious Diseases and Therapy 2021; 10(3):1491-1504. doi: 10.1007/s40121-021-00460-4
  • 56. Moriyama M, Hugentobler WJ, Iwasaki A. Seasonality of Respiratory Viral Infections. Annualal Review of Virology 2020; 7(1):83-101. doi: 10.1146/annurev-virology-012420-022445