Does mammalian target of rapamycin or sestrin 1 protein signaling have a role in bone fracture healing?

Does mammalian target of rapamycin or sestrin 1 protein signaling have a role in bone fracture healing?

Background/aim: Fracture healing is a complex physiological process that involves a well-orchestrated series of biological events. Themammalian target of rapamycin (mTOR) and sestrin 1 (SESN 1) play a central role in cell metabolism, proliferation, and survival. Theaim of our study is to present serum mTOR and SESN 1 levels by comparing patients with or without bone fractures. It is also a guidefor further research on the roles of these proteins in fracture healing.Materials and methods: A total of 34 patients (10 females, 24 males) with bone fractures and 32 controls (10 females, 22 males)participated in this study. After collecting serum venous blood samples, the quantitative sandwich ELISA technique was used for thedetermination of serum mTOR and SESN 1 levels.Results: The mean serum mTOR level was significantly higher in the fracture group compared to the control group (P = 0.001). However,SESN 1 levels did not significantly differ between groups (P = 0.913).Conclusion: We found that serum mTOR levels increased on the first day after fracture compared to the control group. However, weobtained no significant difference between groups in terms of SESN 1 levels. This study may guide further clinical studies investigatingthe potential role of mTOR signaling in the bone healing process.

___

  • 1. Donaldson LJ, Reckless IP, Scholes S, Mindell JS, Shelton NJ. The epidemiology of fractures in England. Journal of Epidemiology & Community Health 2008; 62: 174-180. doi: 10.1136/jech.2006.056622
  • 2. Dimitriou R, Tsiridis E, Giannoudis P V. Current concepts of molecular aspects of bone healing. Injury 2005; 36: 1392-1404. doi: 10.1016/j.injury.2005.07.019
  • 3. Tsiridis E, Upadhyay N, Giannoudis P. Molecular aspects of fracture healing: which are the important molecules? Injury 2007; 38 (Suppl. 1): S11-25. doi: 10.1016/j.injury.2007.02.006
  • 4. Hori K, Sen A, Artavanis-Tsakonas S. Notch signaling at a glance. Journal of Cell Science 2013; 126: 2135-2140. doi: 10.1242/jcs.127308
  • 5. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9-22. doi: 10.1016/j.ccr.2007.05.008
  • 6. Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Molecular Cell 2010; 40: 310-322. doi: 10.1016/j. molcel.2010.09.026
  • 7. Takano A, Usui I, Haruta T, Kawahara J, Uno T et al. Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Molecular Cellular Biology 2001; 21 (15): 5050-5062. doi: 10.1128/MCB.21.15.5050-5062.2001
  • 8. Sciarretta S, Volpe M, Sadoshima J. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circulation Research 2014; 114: 549-564. doi: 10.1161/ CIRCRESAHA.114.302022
  • 9. Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLoS One 2010; 5 (4): e9979. doi: 10.1371/ journal.pone.0009979
  • 10. Yang SB, Tien AC, Boddupalli G, Xu AW, Jan YN et al. Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 2012; 75: 425-436. doi: 10.1016/j.neuron.2012.03.043
  • 11. Takayama K, Kawakami Y, Lavasani M, Mu X, Cummins JH et al. mTOR signaling plays a critical role in the defects observed in muscle-derived stem/progenitor cells isolated from a murine model of accelerated aging. Journal of Orthopaedic Research 2017; 35: 1375-1382. doi: 10.1002/jor.23409
  • 12. Chen J, Long F. MTOR signaling in skeletal development and disease. Bone Research 2018; 6: 1. doi: 10.1038/s41413-017- 0004-5
  • 13. Fitter S, Matthews MP, Martin SK, Xie J, Ooi SS et al. mTORC1 plays an important role in skeletal development by controlling pre-osteoblast differentiation. Molecular and Cellular Biology 2017; 37: 1-20. doi: 10.1128/MCB.00668-16
  • 14. Lee JH, Budanov AV, Karin M. Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metabolism 2013; 18: 792- 801. doi: 10.1016/j.cmet.2013.08.018
  • 15. Alvarez-Garcia O, Carbajo-Perez E, Garcia E, Gil H, Molinos I et al. Rapamycin retards growth and causes marked alterations in the growth plate of young rats. Pediatric Nephrology 2007; 22: 954-961. doi: 10.1007/s00467-007-0456-8
  • 16. Holstein JH, Klein M, Garcia P, Histing T, Culemann U et al. Rapamycin affects early fracture healing in mice. British Journal of Pharmacology 2008; 154: 1055-1062. doi: 10.1038/ bjp.2008.167
  • 17. Yang G, Duan X, Lin D, Li T, Luo D et al. Rapamycin-induced autophagy activity promotes bone fracture healing in rats. Experimental and Therapeutic Medicine 2015; 10: 1327-1333. doi: 10.3892/etm.2015.2660
  • 18. Einhorn TA. Enhancement of fracture-healing. Journal of Bone and Joint Surgery-American Volume 1995; 77: 940-956. doi: 10.2106/00004623-199506000-00016
  • 19. O’Neill KR, Stutz CM, Mignemi NA, Burns MC, Murry MR et al. Micro-computed tomography assessment of the progression of fracture healing in mice. Bone 2012; 50: 1357-1367. doi: 10.1016/j.bone.2012.03.008
  • 20. Guntur AR, Rosen CJ. Bone as an endocrine organ. Endocrine Practice 2012; 18 (5): 758-762. doi: 10.4158/EP12141.RA
  • 21. Shen G, Ren H, Qiu T, Zhang Z, Zhao W et al. Mammalian target of rapamycin as a therapeutic target in osteoporosis. Journal of Cellular Physiology 2018; 233 (5): 3929-3944. doi: 10.1002/jcp.26161
  • 22. Martin SK, Fitter S, Bong LF, Drew JJ, Gronthos S et al. NVPBEZ235, a dual pan class I PI3 kinase and mTOR inhibitor, promotes osteogenic differentiation in human mesenchymal stromal cells. Journal of Bone and Mineral Research 2010; 25: 2126-2137. doi: 10.1002/jbmr.114
  • 23. Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A. Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Reports 2017; 6: 87-100. doi: 10.1016/j.bonr.2017.03.002
  • 24. You JS, Anderson GB, Dooley MS, Hornberger TA. The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice. Disease Models & Mechanisms 2015; 8: 1059-1069. doi: 10.1242/dmm.019414
  • 25. Ma J, Li M, Hock J, Yu X. Hyperactivation of mTOR critically regulates abnormal osteoclastogenesis in neurofibromatosis type 1. Journal of Orthopaedic Research 2012; 30: 144-152. doi: 10.1002/jor.21497
  • 26. Liu X, Joshi SK, Samagh SP, Dang YX, Laron D et al. Evaluation of Akt/mTOR activity in muscle atrophy after rotator cuff tears in a rat model. Journal of Orthopaedic Research 2012; 30: 1440-1446. doi: 10.1002/jor.22096
  • 27. Zhou R, Zhang Z, Zhao L, Jia C, Xu S et al. Inhibition of mTOR signaling by oleanolic acid contributes to its anti-tumor activity in osteosarcoma cells. Journal of Orthopaedic Research 2011; 29: 846-852. doi: 10.1002/jor.21311
  • 28. Jiang LB, Jin YL, Wang HR, Jiang YQ, Dong J. Glucosamine protects nucleus pulposus cells and induces autophagy via the mTOR-dependent pathway. Journal of Orthopaedic Research 2014; 32: 1532-1542. doi: 10.1002/jor.22699
  • 29. Joshi SK, Liu X, Samagh SP, Lovett DH, Bodine SC et al. MTOR regulates fatty infiltration through SREBP-1 and PPARγ after a combined massive rotator cuff tear and suprascapular nerve injury in rats. Journal of Orthopaedic Research 2013; 31: 724- 730. doi: 10.1002/jor.22254
  • 30. Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008; 134: 451-460. doi: 10.1016/j.cell.2008.06.028
  • 31. Ho A, Cho CS, Namkoong S, Cho US, Lee JH. Biochemical basis underlying sestrins’ physiological activities. Trends in Biochemical Sciences 2016; 41 (7): 621-632. doi: 10.1016/j. tibs.2016.04.005
  • 32. Crisol BM, Lenhare L, Gaspar RS, Gaspar RC, Muñoz VR et al. The role of physical exercise on Sestrin1 and 2 accumulations in the skeletal muscle of mice. Life Sciences 2018; 194: 98-103. doi: 10.1016/j.lfs.2017.12.023
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Göksel TUZCU, Ali Uğur USLU, Ayça TUZCU, Rabia Aydoğan BAYKARA, Ahmet OMMA, Adem KÜÇÜK

The validity and reliability of the Turkish version of the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD)

Semra TOPUZ, Kardem ULAŞ, Gönül DİNÇ HORASAN

The effect of hyperglycemic peak induced by oral glucose tolerance test on the oxidant and antioxidant levels

Tekin YILDIRIM, Elif BÖREKÇİ, Elif TURAN, Yalçın ARAL, Zeynep Tuğba OZAN, Yeşim GÖÇMEN

Does mammalian target of rapamycin or sestrin 1 protein signaling have a role in bone fracture healing?

Özhan PAZARCI, Yalkın ÇAMURCU, Seyran KILINÇ, Halef Okan DOĞAN

Özhan PAZARCI, Halef Okan DOĞAN, Seyran KILINÇ, İsmet Yalkin ÇAMURCU

IFN-γ stimulated dental follicle mesenchymal stem cells regulate activated lymphocyte response in rheumatoid arthritis patients in vitro

Tunç AKKOÇ, Nevsun İNANÇ, Deniz GENÇ, Noushin ZIBANDEH, Haner DİRESKENELİ

Kardem ULAŞ, Semra TOPUZ, Gönül HORASAN

Şule ARICAN, Ramazan DERTLİ, Çağdaş DAĞLI, Gülçin HACIBEYOĞLU, Mustafa KOYUNCU, Ahmet TOPAL, Sema Tuncer UZUN, Mehmet ASIL

Can we predict patients that will not benefit from invasive mechanical ventilation? A novel scoring system in intensive care: the IMV Mortality Prediction Score (IMPRES

Akın KAYA, Cenk KIRAKLI, Mehtap PEHLİVANLAR KÜÇÜK, Esra YARAR, Hayriye BEKTAŞ AKSOY, Özlem ŞENGÖREN DİKİŞ, Hale KEFELİ ÇELİK, Serdar ÖZKAN, Tevfik ÖZLÜ, Ahmet Oğuzhan KÜÇÜK

Mustafa Kemal ATİLLA, Bahattin AVCI, Lokman İRKILATA, Mustafa AYDIN, Alper BİTKİN, Mevlüt KELEŞ, İnci YÜCEL, Mahmut ULUBAY