Discovering missing heritability and early risk prediction for type 2 diabetes: a new perspective for genome-wide association study analysis with the Nurses' Health Study and the Health Professionals' Follow-Up Study

Discovering missing heritability and early risk prediction for type 2 diabetes: a new perspective for genome-wide association study analysis with the Nurses' Health Study and the Health Professionals' Follow-Up Study

Background/aim: Despite the rise in type 2 diabetes prevalence worldwide, we do not have a method for early risk prediction. The predictive ability of genetic models has been found to be little or negligible so far. In this study, we aimed to develop a better early risk prediction method for type 2 diabetes. Materials and methods: We used phenotypic and genotypic data from the Nurses Health Study and Health Professionals Follow-up Study cohorts and analyzed them by using binary logistic regression. Results: Phenotypic variables yielded 70.7% overall correctness and an area under the curve (AUC) of 0.77. With regard to genotype, 798 single nucleotide polymorphisms with P-values of lower than 1.0E-3 yielded 90.0% correctness and an AUC of 0.965. This is the highest score in the literature, even including the scores obtained with phenotypic variables. The additive contributions of phenotype and genotype increased the overall correctness to 92.9% and the AUC to 0.980. Conclusion: Our results showed that genotype could be used to obtain a higher score, which could enable early risk prediction. These findings present new possibilities for genome-wide association study analysis in terms of discovering missing heritability. These results should be confirmed by follow-up studies.

___

  • 1. Magee MJ, Narayan KM. Global confluence of infectious and non-communicable diseases – the case of type 2 diabetes. Prev Med 2013; 57: 149–151.
  • 2. Poulsen P, Kyvik KO, Vaag A, Beck-Nielsen H. Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance--a population-based twin study. Diabetologia 1999; 42: 139–145.
  • 3. Riserus U, Arnlov J, Berglund L. Long-term predictors of insulin resistance: role of lifestyle and metabolic factors in middle-aged men. Diabetes Care 2007; 30: 2928–2933.
  • 4. Riserus U, Willett WC, Hu FB. Dietary fats and prevention of type 2 diabetes. Prog Lipid Res 2009; 48: 44–51.
  • 5. Muhlenbruch K, Jeppesen C, Joost HG, Boeing H, Schulze MB. The value of genetic information for diabetes risk prediction - differences according to sex, age, family history and obesity. PLoS One 2013; 8: e64307.
  • 6. Balkau B, Lange C, Fezeu L, Tichet J, de Lauzon-Guillain B, Czernichow S, Fumeron F, Froguel P, Vaxillaire M, Cauchi S et al. Predicting diabetes: clinical, biological, and genetic approaches: data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care 2008; 31: 2056–2061.
  • 7. de Miguel-Yanes JM, Shrader P, Pencina MJ, Fox CS, Manning AK, Grant RW, Dupuis J, Florez JC, D’Agostino RB Sr, Cupples LA et al. Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care 2011; 34: 121–125.
  • 8. Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, Berglund G, Altshuler D, Nilsson P, Groop L. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 2008; 359: 2220–2232.
  • 9. Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, Dupuis J, Manning AK, Florez JC, Wilson PW, D’Agostino RB Sr et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 2008; 359: 2208– 2219.
  • 10. Talmud PJ, Hingorani AD, Cooper JA, Marmot MG, Brunner EJ, Kumari M, Kivimaki M, Humphries SE. Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ 2010; 340: b4838.
  • 11. van Hoek M, Dehghan A, Witteman JC, van Duijn CM, Uitterlinden AG, Oostra BA, Hofman A, Sijbrands EJ, Janssens AC. Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 2008; 57: 3122–3128.
  • 12. Vaxillaire M, Veslot J, Dina C, Proenca C, Cauchi S, Charpentier G, Tichet J, Fumeron F, Marre M, Meyre D et al. Impact of common type 2 diabetes risk polymorphisms in the DESIR prospective study. Diabetes 2008; 57: 244–254.
  • 13. Vassy JL, Meigs JB. Is genetic testing useful to predict type 2 diabetes? Best Pract Res Clin Endocrinol Metabol 2012; 26: 189– 201.
  • 14. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344: 1343–1350.
  • 15. Wheeler E, Barroso I. Genome-wide association studies and type 2 diabetes. Briefings in Functional Genomics 2011; 10: 52–60. 16. Florez JC. The genetics of type 2 diabetes: a realistic appraisal in 2008. J Clin Endocrinol Metab 2008; 93: 4633–4642.
  • 17. Billings LK, Florez JC. The genetics of type 2 diabetes: what have we learned from GWAS? Ann N Y Acad Sci 2010; 1212: 59–77.
  • 18. Blankers M, Koeter MW, Schippers GM. Missing data approaches in eHealth research: simulation study and a tutorial for nonmathematically inclined researchers. J Med Internet Res 2010; 12: e54.
  • 19. Tong Y, Lin Y, Zhang Y, Yang J, Zhang Y, Liu H, Zhang B. Association between TCF7L2 gene polymorphisms and susceptibility to type 2 diabetes mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis. BMC Med Genet 2009; 10: 15.
  • 20. Wellcome Trust Case Control C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447: 661–678.
  • 21. Lander ES. Initial impact of the sequencing of the human genome. Nature 2011; 470: 187–197.
  • 22. Imamura M, Maeda S. Genetics of type 2 diabetes: the GWAS era and future perspectives [Review]. Endocr J 2011; 58: 723– 739.
  • 23. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010; 42: 579–589.
  • 24. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 2008; 9: 356–369.
  • 25. Janssens AC, Moonesinghe R, Yang Q, Steyerberg EW, van Duijn CM, Khoury MJ. The impact of genotype frequencies on the clinical validity of genomic profiling for predicting common chronic diseases. Genet Med 2007; 9: 528–535.
  • 26. Lango H; UK Type 2 Diabetes Genetics Consortium, Palmer CN, Morris AD, Zeggini E, Hattersley AT, McCarthy MI, Frayling TM, Weedon MN. Assessing the combined impact of
  • 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes 2008; 57: 3129–3135.
  • 27. Bell CG, Finer S, Lindgren CM, Wilson GA, Rakyan VK, Teschendorff AE, Akan P, Stupka E, Down TA, Prokopenko I et al. Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLoS One 2010; 5: e14040.
  • 28. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JR, Rayner NW, Freathy RM et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007; 316: 1336–1341.
  • 29. Yamauchi T, Hara K, Maeda S, Yasuda K, Takahashi A, Horikoshi M, Nakamura M, Fujita H, Grarup N, Cauchi S et al. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat Genet 2010; 42: 864–868.
  • 30. GoDARTS and UKPDS Diabetes Pharmacogenetics Study Group; Wellcome Trust Case Control Consortium 2, Zhou K, Bellenguez C, Spencer CC, Bennett AJ, Coleman RL, Tavendale R, Hawley SA, Donnelly LA et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet 2011; 43: 117–120.
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Endobronchial ultrasound-guided transbronchial needle biopsy for the diagnosis of mediastinal lymphadenopathy in patients with extrathoracic malignancies

Ayşegül ŞENTÜRK, Hatice KILIÇ, Habibe HEZER, Funda KARADUMAN YALÇIN, Hatice Canan HASANOĞLU

Cell apoptosis and proliferation in rat brains after intracerebral hemorrhage: role of Wnt/b-catenin signaling pathway

Ling ZHOU, Li DENG, Neng Bin CHANG, Ling DOU, Chao Xian YANG

Prohepcidin in maternal circulation: is it related to spontaneous preterm labor?

Yüksel ONARAN, Esra Aktepe KESKİN, Zehra Candan İltemir DUVAN

A comparison of dysfunctional voiding scores between patients with nocturnal enuresis and healthy children

Özlem BOYBEYİ, Mustafa Kemal ASLAN, Emine Gül DURMUŞ, İsmail ÖZMEN, Tutku SOYER

Discovering missing heritability and early risk prediction for type 2 diabetes: a new perspective for genome-wide association study analysis with the Nurses' Health Study and the Health Professionals' Follow-Up Study

Hüsamettin GÜL, Yeşim AYDIN SON, Cengizhan AÇIKEL

Optimizing individual treatment outcomes in men with lower urinary tract symptoms using storage subscale score/total International Prostate Symptom Score (IPSS) as a new IPSS ratio

Serkan ALTINTAŞ, İsmail Cenk ACAR, Saadettin Yılmaz ESKİÇORAPÇI, Ali Ersin ZÜMRÜTBAŞ

Effects of oral hormone replacement therapy on mean platelet volume in postmenopausal women

İkbal KAYGUSUZ, Serap Aynur SİMAVLI, Ayla ESER, İlknur İNEGÖL GÜMÜŞ

Is the combined use of insulin resistance indices, including adipokines, more reliable in metabolic syndrome?

Birgül KURAL, Orhan DEĞER, Cihangir EREM, Fulya BALABAN YÜCESAN

Comparison of estrogen and betamethasone in the topical treatment of labial adhesions in prepubertal girls

Nazile ERTÜRK

Evaluation of apoptotic cell death following transient maternal hypotension in fetal rat brain: temporal pattern within the first 24 h after procedure

Sibel BAYRAK, Bilge PEHLİVANOĞLU, Ayşe Meltem SEVGİLİ, Zeynep Dicle BALKANCI