Development of albumin macroinitiator for polymers to use in DNA origami coating

Development of albumin macroinitiator for polymers to use in DNA origami coating

Background/aim: DNA nanostructures have many advantages over polymers and lipid based drug delivery agents such as biodegradability and biocompatibility. However their transfection rates and stability still limit their widely use in nanomedicine. In this study highly versatile and straightforward albumin coating preparation method is showed for DNA nanostructures. Materials and methods: N-methylolmaleimide was esterified with a-bromoisobutyrl bromide (BiBB) to achive bromine functional structure. Then it was attached to bovine serum albumin (BSA) via cysteine-maleimide bond further to use as macroinitiator for atom transfer radical polymerization (ATRP). Cationic polymers can be synthesized from this end further to use as binding domain for fabricated 60 Helix bundle DNA origami. Results: Proton nuclear magnetic resonance (1 H NMR) analysis used for characterization. Methyelene group hydrogens’ peak in 5.0 ppm and strong peak in 1.5–2.0 ppm range showed proper methylolation of maleimide and bromine functional formation, respectively. Then BSA-macroinitiator formation is verified by 1780 Da peak shift in MALDI-TOF (Matrix-assisted laser desorption/ionization - time of flight) spectrum. Moreover electrophoretic mobility shift assay (EMSA) showed successful dense 60 Helix bundle formation. Conclusion: In this study, a facile method is developed to synthesize protein conjugated-ATRP initiator further can be used in polymerization and coating DNA nanostructures. It is feasible for any protein containing cysteine amino acid.

___

  • 1. Seeman NC. Nucleic acid junctions and lattices. Journal of Theoretical Biology 1982; 99 (2): 237-247. doi: 10.1016/0022- 5193(82)90002-9
  • 2. Han D, Pal S, Nangreave J, Deng Z, Liu Y et al. DNA origami with complex curvatures in three-dimensional space. Science 2011; 332 (6027): 342-346. doi: 10.1126/science.1202998
  • 3. Douglas SM, Dietz H, Liedl T, Hogberg B, Graf F et al. Selfassembly of DNA into nanoscale three-dimensional shapes. Nature 2009; 459 (7245): 414-418. doi: 10.1038/nature08016
  • 4. Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 2009; 459 (7243): 73-76. doi: 10.1038/nature07971
  • 5. Rothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature 2006; 440 (7082): 297-302. doi: 10.1038/ nature04586
  • 6. Han S, Liu W, Yang S, Wang R. Facile and label-free electrochemical biosensors for microRNA detection based on DNA origami nanostructures. ACS Omega 2019; 4 (6): 11025- 11031. doi: 10.1021/acsomega.9b01166
  • 7. Wang D, Chai Y, Yuan Y, Yuan R. Precise regulation of enzyme cascade catalytic efficiency with DNA tetrahedron as scaffold for ultrasensitive electrochemical detection of DNA. Analytical Chemistry 2019; 91 (5): 3561-3566. doi: 10.1021/ acs.analchem.8b05407
  • 8. Douglas SM, Bachelet I, Church GM. A logic-gated nanorobot for targeted transport of molecular payloads. Science 2012; 335 (6070): 831-834. doi: 10.1126/science.1214081
  • 9. Langecker M, Arnaut V, Martin TG, List J, Renner S et al. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 2012; 338 (6109): 932-936. doi: 10.1126/science.1225624
  • 10. Linko V, Paasonen ST, Kuzyk A, Torma P, Toppari JJ. Characterization of the conductance mechanisms of DNA origami by AC impedance spectroscopy. Small 2009; 5 (21): 2382-2386. doi: 10.1002/smll.200900683
  • 11. Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller EM et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012; 483 (7389): 311- 314. doi: 10.1038/nature10889
  • 12. Hamblin GD, Carneiro KMM, Fakhoury JF, Bujold KE, Sleiman HF. Correction to rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability. Journal of the American Chemical Society 2012; 134 (11): 5426-5426. doi: 10.1021/ja301573b
  • 13. Jiang Q, Liu S, Liu J, Wang ZG, Ding B. Rationally designed DNA-origami nanomaterials for drug delivery in vivo. Advanced Materials 2019; 31 (45): 1804785. doi: 10.1002/ adma.201804785
  • 14. Li J, Pei H, Zhu B, Liang L, Wei M et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 2011; 5 (11): 8783-8789. doi: 10.1021/nn202774x
  • 15. Udomprasert A, Kangsamaksin T. DNA origami applications in cancer therapy. Cancer Science 2017; 108 (8): 1535-1543. doi: 10.1111/cas.13290
  • 16. Walsh AS, Yin H, Erben CM, Wood MJ, Turberfield AJ. DNA cage delivery to mammalian cells. ACS Nano 2011; 5 (7): 5427- 5432. doi: 10.1021/nn2005574
  • 17. Zhang W, Tung CH. Sequence-independent DNA nanogel as a potential drug carrier. Macromolecular Rapid Communications 2017; 38 (20): 1700366. doi: 10.1002/marc.201700366
  • 18. Hu R, Zhang X, Zhao Z, Zhu G, Chen T et al. DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angewandte Chemie International Edition 2014; 53 (23): 5821-5826. doi: 10.1002/anie.201400323
  • 19. Jiang Q, Song C, Nangreave J, Liu X, Lin L et al. DNA origami as a carrier for circumvention of drug resistance. Journal of the American Chemical Society 2012; 134 (32): 13396-13403. doi: 10.1021/ja304263n
  • 20. Zhao YX, Shaw A, Zeng X, Benson E, Nystrom AM et al. DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 2012; 6 (10): 8684-8691. doi: 10.1021/ nn3022662
  • 21. Lee H, Lytton-Jean AK, Chen Y, Love KT, Park AI et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature Nanotechnology 2012; 7 (6): 389-393. doi: 10.1038/nnano.2012.73
  • 22. Ora A, Jarvihaavisto E, Zhang H, Auvinen H, Santos HA et al. Cellular delivery of enzyme-loaded DNA origami. Chemical Communications 2016; 52 (98): 14161-14164. doi: 10.1039/ c6cc08197e
  • 23. Okholm AH, Nielsen JS, Vinther M, Sorensen RS, Schaffert D et al. Quantification of cellular uptake of DNA nanostructures by qPCR. Methods 2014; 67 (2): 193-197. doi: 10.1016/j. ymeth.2014.01.013
  • 24. Mei Q, Wei X, Su F, Liu Y, Youngbull C et al. Stability of DNA origami nanoarrays in cell lysate. Nano Letters 2011; 11 (4): 1477-1482. doi: 10.1021/nl1040836
  • 25. Castro CE, Kilchherr F, Kim DN, Shiao EL, Wauer T et al. A primer to scaffolded DNA origami. Nature Methods 2011; 8 (3): 221-229. doi: 10.1038/nmeth.1570
  • 26. Perrault SD, Shih WM. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 2014; 8 (5): 5132-5140. doi: 10.1021/nn5011914
  • 27. Ponnuswamy N, Bastings MMC, Nathwani B, Ryu JH, Chou LYT et al. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nature Communications 2017; 8: 15654. doi: 10.1038/ncomms15654
  • 28. Kiviaho JK, Linko V, Ora A, Tiainen T, Jarvihaavisto E et al. Cationic polymers for DNA origami coating - examining their binding efficiency and tuning the enzymatic reaction rates. Nanoscale 2016; 8 (22): 11674-11680. doi: 10.1039/c5nr08355a
  • 29. Dong Y, Yang YR, Zhang Y, Wang D, Wei X et al. Cuboid Vesicles Formed by Frame-Guided Assembly on DNA Origami Scaffolds. Angewandte Chemie-International Edition 2017; 56 (6): 1586-1589. doi: 10.1002/anie.201610133
  • 30. Ahmadi Y, De Llano E, Barisic I. (Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures. Nanoscale 2018; 10 (16): 7494-7504. doi: 10.1039/c7nr09461b
  • 31. Agarwal NP, Matthies M, Gur FN, Osada K, Schmidt TL. Block copolymer micellization as a protection strategy for DNA origami. Angewandte Chemie-International Edition 2017; 56 (20): 5460-5464. doi: 10.1002/anie.201608873
  • 32. Liu Q, Liu G, Wang T, Fu J, Li R et al. Enhanced stability of DNA nanostructures by incorporation of unnatural base pairs. Chemphyschem 2017; 18 (21): 2977-2980. doi: 10.1002/ cphc.201700809
  • 33. Chopra A, Krishnan S, Simmel FC. Electrotransfection of polyamine folded DNA origami structures. Nano Letters 2016; 16 (10): 6683-6690. doi: 10.1021/acs.nanolett.6b03586
  • 34. Brglez J, Nikolov P, Angelin A, Niemeyer CM. Designed intercalators for modification of DNA origami surface properties. Chemistry 2015; 21 (26): 9440-9446. doi: 10.1002/ chem.201500086
  • 35. Mikkila J, Eskelinen AP, Niemela EH, Linko V, Frilander MJ et al. Virus-encapsulated DNA origami nanostructures for cellular delivery. Nano Letters 2014; 14 (4): 2196-2200. doi: 10.1021/nl500677j
  • 36. Schaffert DH, Okholm AH, Sorensen RS, Nielsen JS, Torring T et al. Intracellular delivery of a planar DNA origami structure by the transferrin-receptor internalization pathway. Small 2016; 12 (19): 2634-2640. doi: 10.1002/smll.201503934
  • 37. Almeida-Marrero V, van de Winckel E, Anaya-Plaza E, Torres T, de la Escosura A. Porphyrinoid biohybrid materials as an emerging toolbox for biomedical light management. Chemical Society Reviews 2018; 47 (19): 7369-7400. doi: 10.1039/ c7cs00554g
  • 38. Zhang Y, Zou T, Guan M, Zhen M, Chen D et al. Synergistic effect of human serum albumin and fullerene on Gd-DO3A for tumor-targeting imaging. ACS Applied Materials & Interfaces 2016; 8 (18): 11246-11254. doi: 10.1021/acsami.5b12848
  • 39. Chapman AP, Antoniw P, Spitali M, West S, Stephens S et al. Therapeutic antibody fragments with prolonged in vivo half-lives. Nature Biotechnology 1999; 17 (8): 780-783. doi: 10.1038/11717
  • 40. Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clinical Cancer Research 2004; 10 (20): 7063-7070. doi: 10.1158/1078-0432. CCR-04-0789
  • 41. Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nature Biotechnology 2008; 26 (8): 925-932. doi: 10.1038/nbt.1480
  • 42. Polson AG, Calemine-Fenaux J, Chan P, Chang W, Christensen E et al. Antibody-drug conjugates for the treatment of nonHodgkin’s lymphoma: target and linker-drug selection. Cancer Research 2009; 69 (6): 2358-2364. doi: 10.1158/0008-5472. CAN-08-2250
  • 43. Heredia KL, Maynard HD. Synthesis of protein-polymer conjugates. Organic & Biomolecular Chemistry 2007; 5 (1): 45-53. doi: 10.1039/b612355d
  • 44. Nicolas J, Mantovani G, Haddleton DM. Living radical polymerization as a tool for the synthesis of polymerprotein/peptide bioconjugates. Macromolecular Rapid Communications 2007; 28 (10): 1083-1111. doi: 10.1002/ marc.200700112
  • 45. Tolstyka ZP, Kopping JT, Maynard HD. Straightforward synthesis of cysteine-reactive telechelic polystyrene. Macromolecules 2008; 41 (3): 599-606. doi: 10.1021/ ma702161q
  • 46. Cobo I, Li M, Sumerlin BS, Perrier S. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nature Materials 2015; 14 (2): 143-159. doi: 10.1038/Nmat4106
  • 47. Tawney PO, Snyder RH, Bryan CE, Conger RP, Dovell FS et al. The chemistry of maleimide and its derivatives. I. N-Carbamylmaleimide. The Journal of Organic Chemistry 1960; 25 (1): 56-60. doi: 10.1021/jo01071a017
  • 48. Çakir T, Serhatli IE, Önen A. Graft copolymerization of methylmethacrylate with N-substituted maleimide-styrene copolymer by ATRP. Journal of Applied Polymer Science 2006; 99 (5): 1993-2001. doi: 10.1002/app.22013
  • 49. Nicolas J, San Miguel V, Mantovani G, Haddleton DM. Fluorescently tagged polymer bioconjugates from protein derived macroinitiators. Chemical Communications 2006; (45): 4697-4699. doi:10.1039/b609935a
  • 50. Valimaki S, Khakalo A, Ora A, Johansson LS, Rojas OJ et al. Effect of PEG-PDMAEMA block copolymer architecture on polyelectrolyte complex formation with heparin. Biomacromolecules 2016; 17 (9): 2891-2900. doi: 10.1021/acs. biomac.6b00699
  • 51. Auvinen H, Zhang H, Nonappa, Kopilow A, Niemela EH et al. Protein coating of DNA nanostructures for enhanced stability and immunocompatibility. Advanced Healthcare Materials 2017; 6 (18): 1700692. doi: 10.1002/adhm.201700692
  • 52. Stahl E, Martin TG, Praetorius F, Dietz H. Facile and scalable preparation of pure and dense DNA origami solutions. Angewandte Chemie-International Edition 2014; 53 (47): 12735-12740. doi: 10.1002/anie.201405991
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Alcohol consumption and alcohol policy

Dilek YAPAR, Mustafa Necmi İLHAN

Alterations in follicular fluid BMP-15 RNA expression in women undergoing controlled ovarian hyperstimulation

Şükriye Derya DEVECİ

What is the impact of PPAR-γ agonist-rosiglitazone on ovarian reserve after hysterectomy? An experimental study

Berna DİLBAZ, Betül DÜNDAR, Ümit GÖKTOLGA, Ömer Lütfi TAPISIZ, Burcu GÜNDOĞDU, Kamil Hakan MÜFTÜOĞLU, Serkan Barış MÜLAZIMOĞLU

Frequency of sarcopenia and associated outcomes in patients with chronic obstructive pulmonary disease

Ruhuşen KUTLU, Fatma Gökşin CİHAN, Havva DEMİRCİOĞLU, Adil ZAMANİ, Şebnem YOSUNKAYA

Development of albumin macroinitiator for polymers to use in DNA origami coating

Ezgi EMÜL, Necdet SAĞLAM, Aykut BİLİR

Protective effects of apocynin on damaged testes of rats exposed to methotrexate

Yusufhan YAZIR, Melda YARDIMOĞLU YILMAZ, Kübra KAVRAM SARIHAN, Fatma Ceyla ERALDEMİR, Esra ACAR

Radiological approaches to COVID-19 pneumonia

Recep SAVAŞ, Tuncay HAZIROLAN, Furkan UFUK

Importance of the National Early Warning Score (NEWS) at the time of discharge from the intensive care unit

Cihangir DOĞU, Özgür YAĞAN, Güvenç DOĞAN, Selçuk KAYIR

Characteristics of the initial patients hospitalized for COVID-19: a single-center report

Alpay MEDETALİBEYOĞLU, Gazi ÇAPAR, Tufan TÜKEK, Naci ŞENKAL, Murat KÖSE

Omics era in forensic medicine: towards a new age

Mahmut Şerif YILDIRIM, Necdet SAĞLAM, Ramazan AKÇAN, Halit Canberk AYDOĞAN, Burak TAŞTEKİN