Omics era in forensic medicine: towards a new age

Omics era in forensic medicine: towards a new age

Background/aim: Forensic medicine and sciences is a multidisciplinary branch of science, which frequently benefit from novel technologies. State of the art omics technologies have begun to be performed in forensic medicine and sciences, particularly in postmortem interval, intoxication, drugs of abuse, diagnosis of diseases and cause of death. This review aims to discuss the role and use of great omics (metabolomics, proteomics, genomics and transcriptomics) in forensic sciences, in detail. Materials and methods: A detailed review of related literature was performed, and studies were subdivided as per the type of omics. Results and conclusion: Omics seems as a revolutionary step in forensic science and sure carries it towards a new age. The number of forensic studies utilizing omics steadily increases in last years. Omics strategies should be used together in order to gather more accurate and certain data. Additional studies need to be performed to incorporate omics into routine forensic methodology.

___

  • 1. Parikh C. Parikh’s textbook of medical jurisprudence, forensic medicine and toxicology. 6th ed. New Delhi, India: CBS Publishers; 1999.
  • 2. Yadav SP. The wholeness in suffix -omics, -omes, and the word om. Journal of Biomolecular Techniques 2007; 18 (5): 277.
  • 3. Donaldson AE, Lamont IL. Estimation of post-mortem interval using biochemical markers. Australian Journal of Forensic Sciences 2013; 46 (1): 8-26. doi: 10.1080/00450618.2013.784356
  • 4. Giebultowicz J, Ruzycka M, Fudalej M, Krajewski P, Wroczynski P. LC-MS/MS method development and validation for quantitative analyses of 2-aminothiazoline-4-carboxylic acid--a new cyanide exposure marker in post mortem blood. Talanta 2016; 150: 586-592. doi: 10.1016/j.talanta.2015.12.076
  • 5. Tsai IL, Weng TI, Tseng YJ, Tan HK, Sun HJ et al. Screening and confirmation of 62 drugs of abuse and metabolites in urine by ultra-high-performance liquid chromatographyquadrupole time-of-flight mass spectrometry. Journal of Analytical Toxicology 2013; 37 (9): 642-651. doi: 10.1093/jat/ bkt083
  • 6. Miyaguchi H, Kuwayama K. Comparison of sample preparation methods for zolpidem extraction from hair. Forensic Toxicology 2014; 33 (1): 159-164. doi: 10.1007/s11419-014- 0256-3
  • 7. Kim J, Yum H, Jang M, Shin I, Yang W et al. A comprehensive and sensitive method for hair analysis in drug-facilitated crimes and incorporation of zolazepam and tiletamine into hair after a single exposure. Analytical and Bioanalytical Chemistry 2016; 408 (1): 251-263. doi: 10.1007/s00216-015-9099-y
  • 8. Cappelle D, Yegles M, Neels H, Van Nuijs ALN, De Doncker M et al. Nail analysis for the detection of drugs of abuse and pharmaceuticals: a review. Forensic Toxicology 2014; 33 (1): 12-36. doi: 10.1007/s11419-014-0258-1
  • 9. Hang C, Ping X, Min S. Long-term follow-up analysis of zolpidem in fingernails after a single oral dose. Analytical and Bioanalytical Chemistry 2013; 405 (23): 7281-7289. doi: 10.1007/s00216-013-7188-3
  • 10. Shen M, Chen H, Xiang P. Determination of opiates in human fingernail comparison to hair. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 2014; 967: 84-89. doi: 10.1016/j.jchromb.2014.07.014
  • 11. Ramón-Laca A, Soriano L, Gleeson D, Godoy JA. A simple and effective method for obtaining mammal DNA from faeces. Wildlife Biology 2015; 21 (4): 195-203. doi: 10.2981/wlb.00096
  • 12. Nakanishi H, Shojo H, Ohmori T, Hara M, Takada A et al. Identification of feces by detection of Bacteroides genes. Forensic Science International: Genetics 2013; 7 (1): 176-179. doi: 10.1016/j.fsigen.2012.09.006
  • 13. Locci E, Stocchero M, Noto A, Chighine A, Natali L et al. A (1)H NMR metabolomic approach for the estimation of the time since death using aqueous humour: an animal model. Metabolomics 2019; 15 (5): 76. doi: 10.1007/s11306-019-1533-2
  • 14. Brockbals L, Kraemer T, Steuer AE. Analytical considerations for postmortem metabolomics using GC-high-resolution MS. Analytical and Bioanalytical Chemistry 2019. doi: 10.1007/ s00216-019-02258-3
  • 15. Fiehn O. Metabolomics - the link between genotypes and phenotypes. Plant Molecular Biology 2002; 48 (1-2): 155-171. doi: 10.1023/A:1013713905833
  • 16. Dettmer K, Aronov PA, Hammock BD. Mass spectrometrybased metabolomics. Mass Spectrometry Reviews 2007; 26 (1): 51-78. doi: 10.1002/mas.20108
  • 17. Lederberg J, McCray AT. Ome Sweet ‘Omics - A genealogical treasury of words. The Scientist 2001; 15 (7): 8-8.
  • 18. Carter DO, Yellowlees D, Tibbett M. Cadaver decomposition in terrestrial ecosystems. The Science of Nature - Naturwissenschaften 2007; 94 (1): 12-24. doi: 10.1007/s00114- 006-0159-1
  • 19. Pechal JL, Crippen TL, Tarone AM, Lewis AJ, Tomberlin JK et al. Microbial community functional change during vertebrate carrion decomposition. PLoS One 2013; 8 (11): e79035. doi: 10.1371/journal.pone.0079035
  • 20. Castillo-Peinado LS, Luque de Castro MD. Present and foreseeable future of metabolomics in forensic analysis. Analytica Chimica Acta 2016; 925: 1-15. doi: 10.1016/j. aca.2016.04.040
  • 21. Hirakawa K, Koike K, Uekusa K, Nihira M, Yuta K et al. Experimental estimation of postmortem interval using multivariate analysis of proton NMR metabolomic data. Legal medicine (Tokyo, Japan) 2009; 11 Suppl 1: S282-285. doi: 10.1016/j.legalmed.2009.02.007
  • 22. Dai X, Fan F, Ye Y, Lu X, Chen F et al. An experimental study on investigating the postmortem interval in dichlorvos poisoned rats by GC/MS-based metabolomics. Legal medicine (Tokyo, Japan) 2019; 36: 28-36. doi: 10.1016/j.legalmed.2018.10.002
  • 23. Wu Z, Lu X, Chen F, Dai X, Ye Y et al. Estimation of early postmortem interval in rats by GC-MS-based metabolomics. Legal medicine (Tokyo, Japan) 2018; 31: 42-48. doi: 10.1016/j. legalmed.2017.12.014
  • 24. Du T, Lin Z, Xie Y, Ye X, Tu C et al. Metabolic profiling of femoral muscle from rats at different periods of time after death. PLoS One 2018; 13 (9): e0203920. doi: 10.1371/journal. pone.0203920
  • 25. Kaszynski RH, Nishiumi S, Azuma T, Yoshida M, Kondo T et al. Postmortem interval estimation: a novel approach utilizing gas chromatography/mass spectrometry-based biochemical profiling. Analytical and Bioanalytical Chemistry 2016; 408 (12): 3103-3112. doi: 10.1007/s00216-016-9355-9
  • 26. Sato T, Zaitsu K, Tsuboi K, Nomura M, Kusano M et al. A preliminary study on postmortem interval estimation of suffocated rats by GC-MS/MS-based plasma metabolic profiling. Analytical and Bioanalytical Chemistry 2015; 407 (13): 3659-3665. doi: 10.1007/s00216-015-8584-7.
  • 27. Kang Y-R, Park YS, Park YC, Yoon SM, JongAhn H et al. UPLC/ Q-TOF MS based metabolomics approach to post-morteminterval discrimination: mass spectrometry based metabolomics approach. Journal of Pharmaceutical Investigation 2012; 42 (1): 41-46. doi: 10.1007/s40005-012-0006-7
  • 28. Holmes E, Loo RL, Cloarec O, Coen M, Tang H et al. Detection of urinary drug metabolite (xenometabolome) signatures in molecular epidemiology studies via statistical total correlation (NMR) spectroscopy. Analytical Chemistry 2007; 79 (7): 2629- 2640. doi: 10.1021/ac062305n
  • 29. Shima N, Miyawaki I, Bando K, Horie H, Zaitsu K et al. Influences of methamphetamine-induced acute intoxication on urinary and plasma metabolic profiles in the rat. Toxicology 2011; 287 (1-3): 29-37. doi: 10.1016/j.tox.2011.05.012
  • 30. Krumbiegel F, Hastedt M, Tsokos M. Nails are a potential alternative matrix to hair for drug analysis in general unknown screenings by liquid-chromatography quadrupole time-of-flight mass spectrometry. Forensic Science Medicine and Pathology 2014; 10 (4): 496-503. doi: 10.1007/s12024-014-9588-x
  • 31. Steuer AE, Brockbals L, Kraemer T. Metabolomic Strategies in Biomarker Research-New Approach for Indirect Identification of Drug Consumption and Sample Manipulation in Clinical and Forensic Toxicology? Frontiers in Chemistry 2019; 7: 319. doi: 10.3389/fchem.2019.00319
  • 32. Varma VR, Oommen AM, Varma S, Casanova R, An Y et al. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLoS Medicine 2018; 15 (1): e1002482. doi: 10.1371/ journal.pmed.1002482
  • 33. Michell AW, Mosedale D, Grainger DJ, Barker RA. Metabolomic analysis of urine and serum in Parkinson’s disease. Metabolomics 2008; 4 (3): 191-201. doi: 10.1007/s11306-008-0111-9
  • 34. Kenny LC, Dunn WB, Ellis DI, Myers J, Baker PN et al. Novel biomarkers for pre-eclampsia detected using metabolomics and machine learning. Metabolomics 2005; 1 (3): 227-234. doi: 10.1007/s11306-005-0003-1
  • 35. Favretto D, Cosmi E, Ragazzi E, Visentin S, Tucci M et al. Cord blood metabolomic profiling in intrauterine growth restriction. Analytical and Bioanalytical Chemistry 2012; 402 (3): 1109- 1121. doi: 10.1007/s00216-011-5540-z
  • 36. Cecchi R. Diagnosis of anaphylactic death in forensics: review and future perspectives. Legal medicine (Tokyo, Japan) 2016; 22: 75-81. doi: 10.1016/j.legalmed.2016.08.006
  • 37. Hu X, Wu GP, Zhang MH, Pan SQ, Wang RR et al. GC-MS-based metabolic profiling reveals metabolic changes in anaphylaxis animal models. Analytical and Bioanalytical Chemistry 2012; 404 (3): 887-893. doi: 10.1007/s00216-012-6129-x
  • 38. Ghauri FY, Nicholson JK, Sweatman BC, Wood J, Beddell CR et al. NMR spectroscopy of human post mortem cerebrospinal fluid: distinction of Alzheimer’s disease from control using pattern recognition and statistics. NMR in Biomedicine 1993; 6 (2): 163-167. doi: 10.1002/nbm.1940060210
  • 39. Vlahou A, Fountoulakis M. Proteomic approaches in the search for disease biomarkers. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 2005; 814 (1): 11-19. doi: 10.1016/j.jchromb.2004.10.024
  • 40. Cristoni S, Bernardi LR. Development of new methodologies for the mass spectrometry study of bioorganic macromolecules. Mass Spectrometry Reviews 2003; 22 (6): 369-406. doi: 10.1002/mas.10062
  • 41. Liu Z, Yuan Z, Zhao Q. SELDI-TOF-MS proteomic profiling of serum, urine, and amniotic fluid in neural tube defects. PLoS One 2014; 9 (7): e103276. doi: 10.1371/journal.pone.0103276
  • 42. Trenchevska O, Nelson RW, Nedelkov D. Mass Spectrometric Immunoassays in Characterization of Clinically Significant Proteoforms. Proteomes 2016; 4 (1). doi: 10.3390/ proteomes4010013
  • 43. Virkler K, Lednev IK. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Science International 2009; 188 (1-3): 1-17. doi: 10.1016/j. forsciint.2009.02.013
  • 44. Pittner S, Monticelli FC, Pfisterer A, Zissler A, Sanger AM et al. Postmortem degradation of skeletal muscle proteins: a novel approach to determine the time since death. International Journal of Legal Medicine 2016; 130 (2): 421-431. doi: 10.1007/ s00414-015-1210-6
  • 45. Pittner S, Ehrenfellner B, Monticelli FC, Zissler A, Sanger AM et al. Postmortem muscle protein degradation in humans as a tool for PMI delimitation. International Journal of Legal Medicine 2016; 130 (6): 1547-1555. doi: 10.1007/s00414-016- 1349-9
  • 46. Choi KM, Zissler A, Kim E, Ehrenfellner B, Cho E et al. Postmortem proteomics to discover biomarkers for forensic PMI estimation. International Journal of Legal Medicine 2019; 133 (3): 899-908. doi: 10.1007/s00414-019-02011-6
  • 47. Handke J, Procopio N, Buckley M, Van der Meer D, Williams G et al. Successive bacterial colonisation of pork and its implications for forensic investigations. Forensic Science International 2017; 281: 1-8. doi: 10.1016/j.forsciint.2017.10.025
  • 48. Warinner C, Speller C, Collins MJ. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 2015; 370 (1660): 20130376. doi: 10.1098/rstb.2013.0376
  • 49. Procopio N, Williams A, Chamberlain AT, Buckley M. Forensic proteomics for the evaluation of the post-mortem decay in bones. Journal of Proteomics 2018; 177: 21-30. doi: 10.1016/j. jprot.2018.01.016
  • 50. Prieto-Bonete G, Perez-Carceles MD, Maurandi-Lopez A, Perez-Martinez C, Luna A. Association between protein profile and postmortem interval in human bone remains. Journal of Proteomics 2019; 192: 54-63. doi: 10.1016/j.jprot.2018.08.008
  • 51. Bittencourt LO, Puty B, Charone S, Aragao WAB, Farias-Junior PM et al. Oxidative biochemistry disbalance and changes on proteomic profile in salivary glands of rats induced by chronic exposure to methylmercury. Oxidative Medicine and Cellular Longevity 2017; 2017: 5653291. doi: 10.1155/2017/5653291
  • 52. Adeola HA, Van Wyk JC, Arowolo A, Ngwanya RM, Mkentane K et al. Emerging diagnostic and therapeutic potentials of human hair proteomics. Proteomics Clinical Applications 2018; 12 (2). doi: 10.1002/prca.201700048
  • 53. Broadbelt KG, Rivera KD, Paterson DS, Duncan JR, Trachtenberg FL et al. Brainstem deficiency of the 14-3-3 regulator of serotonin synthesis: a proteomics analysis in the sudden infant death syndrome. Molecular & Cellular Proteomics 2012; 11 (1): M111 009530. doi: 10.1074/mcp. M111.009530
  • 54. Palmiere C, Comment L, Vilarino R, Mangin P, Reggiani Bonetti L. Measurement of beta-tryptase in postmortem serum in cardiac deaths. Journal of Forensic and Legal Medicine 2014; 23: 12-18. doi: 10.1016/j.jflm.2014.01.009
  • 55. Unkrig S, Hagemeier L, Madea B. Postmortem diagnostics of assumed food anaphylaxis in an unexpected death. Forensic Science International. 2010; 198 (1-3): e1-4. doi: 10.1016/j. forsciint.2010.01.007
  • 56. Mustafa FB, Ng FSP, Nguyen TH, Lim LHK. Honeybee venom secretory phospholipase A2 induces leukotriene production but not histamine release from human basophils. Clinical and Experimental Immunology 2008; 151 (1): 94-100. doi: 10.1111/j.1365-2249.2007.03542.x
  • 57. Fineschi V, Cecchi R, Centini F, Reattelli LP, Turillazzi E. Immunohistochemical quantification of pulmonary mast-cells and post-mortem blood dosages of tryptase and eosinophil cationic protein in 48 heroin-related deaths. Forensic Science International 2001; 120 (3): 189-194. doi: 10.1016/s0379- 0738(00)00469-2
  • 58. Edston E, Van Hage-Hamsten M. Postmortem diagnosis of anaphylaxis. Forensic pathology reviews: Springer; 2005. p. 267-281.
  • 59. Kuska B. Beer, Bethesda, and biology: how “genomics” came into being. Journal of the National Cancer Institute 1998; 90 (2): 93-93. doi: 10.1093/jnci/90.2.93
  • 60. Santurro A, Vullo AM, Borro M, Gentile G, La Russa R et al. Personalized medicine applied to forensic sciences: new advances and perspectives for a tailored forensic approach. Current Pharmaceutical Biotechnology 2017; 18 (3): 263-273. doi: 10.2174/1389201018666170207141525
  • 61. Wong SH, Happy C, Blinka D, Gock S, Jentzen JM et al. From personalized medicine to personalized justice: the promises of translational pharmacogenomics in the justice system. Pharmacogenomics 2010; 11 (6): 731-737. doi: 10.2217/ pgs.10.63
  • 62. Sallee FR, DeVane CL, Ferrell RE. Fluoxetine-related death in a child with cytochrome P-450 2D6 genetic deficiency. Journal of Child and Adolescent Psychopharmacology 2000; 10 (1): 27- 34. doi: 10.1089/cap.2000.10.27
  • 63. Ikematsu K, Tsuda R, Tsuruya S, Kubo S, Nakasono I. Toluene inhalation induced changes of gene expression in rat brain: fluorescence differential display PCR analysis. Legal medicine (Tokyo, Japan) 2007; 9 (5): 265-269. doi: 10.1016/j. legalmed.2007.03.001
  • 64. Saito T, Ikeda M, Mushiroda T, Ozeki T, Kondo K et al. Pharmacogenomic study of clozapine-induced agranulocytosis/granulocytopenia in a Japanese population. Biological Psychiatry 2016; 80 (8): 636-642. doi: 10.1016/j. biopsych.2015.12.006
  • 65. Tester DJ, Ackerman MJ. The role of molecular autopsy in unexplained sudden cardiac death. Current Opinion in Cardiology 2006; 21 (3): 166-172. doi: 10.1097/01. hco.0000221576.33501.83
  • 66. Maeda H, Zhu BL, Ishikawa T, Michiue T. Forensic molecular pathology of violent deaths. Forensic Science International 2010; 203 (1-3): 83-92. doi: 10.1016/j.forsciint.2010.07.024
  • 67. Tester DJ, Spoon DB, Valdivia HH, Makielski JC, Ackerman MJ. Targeted mutational analysis of the RyR2-encoded cardiac ryanodine receptor in sudden unexplained death: a molecular autopsy of 49 medical examiner/coroner’s cases. Mayo Clinic Proceedings 2004; 79 (11): 1380-1384. doi: 10.4065/79.11.1380
  • 68. Baglin T. Using the laboratory to predict recurrent venous thrombosis. International Journal of Laboratory Hematology 2011; 33 (4): 333-342. doi: 10.1111/j.1751-553X.2011.01345.x
  • 69. Zhao J, Qin X, Li S, Zeng Z. Association between the ACE I/D polymorphism and risk of ischemic stroke: an updated meta-analysis of 47,026 subjects from 105 case-control studies. Journal of the Neurological Sciences 2014; 345 (1-2): 37-47. doi: 10.1016/j.jns.2014.07.023
  • 70. Olivieri O, Stranieri C, Girelli D, Pizzolo F, Grazioli S et al. Homozygosity for angiotensinogen 235T variant increases the risk of myocardial infarction in patients with multi-vessel coronary artery disease. Journal of Hypertension 2001; 19 (5): 879-884. doi: 10.1097/00004872-200105000-00007
  • 71. Martinez E, Puras A, Escribano J, Sanchis C, Carrion L et al. Threonines at position 174 and 235 of the angiotensinogen polypeptide chain are related to familial history of hypertension in a Spanish-Mediterranean population. British Journal of Biomedical Science 2002; 59 (2): 95-100. doi: 10.1080/09674845.2002.11783642
  • 72. Van Hylckama Vlieg A, Flinterman LE, Bare LA, Cannegieter SC, Reitsma PH et al. Genetic variations associated with recurrent venous thrombosis. Circulation: Cardiovascular Genetics 2014; 7 (6): 806-813. doi: 10.1161/CIRCGENETICS.114.000682
  • 73. de Haan HG, Bezemer ID, Doggen CJ, Le Cessie S, Reitsma PH et al. Multiple SNP testing improves risk prediction of first venous thrombosis. Blood 2012; 120 (3): 656-663. doi: 10.1182/ blood-2011-12-397752
  • 74. Maeda H, Ishikawa T, Michiue T. Forensic molecular pathology: its impacts on routine work, education and training. Legal medicine (Tokyo, Japan) 2014; 16 (2): 61-69. doi: 10.1016/j. legalmed.2014.01.002
  • 75. Oehmichen M, Lagodka T, Cröpelin A. RNA and DNA Synthesis of Epidermal Basal Cells after Wounding. Comparison of vital and postmortem investigations. Experimental and Toxicologic Pathology 1997; 49 (3-4): 233-237. doi: 10.1016/s0940- 2993(97)80017-6
  • 76. Takamiya M, Saigusa K, Nakayashiki N, Aoki Y. Studies on mRNA expression of basic fibroblast growth factor in wound healing for wound age determination. International Journal of Legal Medicine 2003; 117 (1): 46-50. doi: 10.1007/s00414-002- 0354-3
  • 77. Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L et al. Transcriptional landscape of the prenatal human brain. Nature 2014; 508 (7495): 199-206. doi: 10.1038/nature13185
  • 78. Ramaker RC, Bowling KM, Lasseigne BN, Hagenauer MH, Hardigan AA et al. Post-mortem molecular profiling of three psychiatric disorders. Genome Medicine 2017; 9 (1): 72. doi: 10.1186/s13073-017-0458-5
  • 79. Selley L, Phillips DH, Mudway I. The potential of omics approaches to elucidate mechanisms of biodiesel-induced pulmonary toxicity. Particle and Fibre Toxicology 2019; 16 (1): 4. doi: 10.1186/s12989-018-0284-y
  • 80. Bararpour N, Sporkert F, Augsburger M, Thomas A. Omics in Forensic Toxicology a Bridge Towards Forensic Medicine. In: Ferrara SD, editor. P5 Medicine and Justice: Innovation, Unitariness and Evidence. Switzerland: Springer; 2018. p. 475- 486.
  • 81. Marco DE, Abram F. Editorial: using genomics, metagenomics and other “omics” to assess valuable microbial ecosystem services and novel biotechnological applications. Frontiers in Microbiology 2019; 10: 151. doi: 10.3389/fmicb.2019.00151
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Neuropeptide Y1 receptor antagonist but not neuropeptide Y itself increased bone mineral density when locally injected with hyaluronic acid in male Wistar rats

Muhammer Özgür ÇEVİK, Feza KORKUSUZ, Petek KORKUSUZ

Surgical management of insulinomas at the Azerbaijan Medical University: a retrospective study of 21 cases over a 10-year period

Elgun SAMADOV, Rovshan HASANOV, Nuru BAYRAMOV, Aytekin ÜNLÜ, Patrizio PETRONE

Alcohol consumption and alcohol policy

Dilek YAPAR, Mustafa Necmi İLHAN

Colchicine intolerance in FMF patients and primary obstacles for optimal dosing

Nazife Şule YAŞAR BİLGE, Erdal BODAKÇI, Timuçin KAŞİFOĞLU, Dilek YAPAR, Şeminur HAZNEDAROĞLU, Gözde Kübra YARDIMCI, Nuh ATAŞ, Berna GÖKER, Reyhan BİLİCİ SALMAN, Abdurrahman TUFAN, Hasan SATIŞ, Hakan BABAOĞLU, Berkan ARMAĞAN, Umut KALYONCU, Alper SARI, Levent KILIÇ

Baseline characteristics predicting clinical outcomes and serious adverse events in middle-aged hypertensive women: a subanalysis of the SPRINT in women aged <65 years

Sibel SAKARYA, Mehmet AKMAN, Ahmet AKICI, Volkan AYDIN, Ali Serdar FAK

Posttraumatic growth and death anxiety in caregivers of cancer patients: PHOENIX study

Ali ALKAN, Ebru KARCI, Elif Berna KÖKSOY, Aslı ALKAN, Eduardo BRUERA, Filiz ÇAY ŞENLER

Antioxidant effects of dexmedetomidine against hydrogen peroxide-induced DNA damage in vitro by alkaline Comet assay

Ela KADIOĞLU, Esra EMERCE, Ayşe ÖZCAN, Çetin KAYMAK, Hülya BAŞAR, Mustafa S. KOTANOĞLU, Hülya BAŞAR

Omics era in forensic medicine: towards a new age

Mahmut Şerif YILDIRIM, Necdet SAĞLAM, Ramazan AKÇAN, Halit Canberk AYDOĞAN, Burak TAŞTEKİN

Importance of the National Early Warning Score (NEWS) at the time of discharge from the intensive care unit

Cihangir DOĞU, Özgür YAĞAN, Güvenç DOĞAN, Selçuk KAYIR

Coenzyme Q10, Zinc and MDA levels in verruca vulgaris

Fevziye Burcu ŞİRİN, Selma KORKMAZ, İjlal ERTURAN, Mehmet YILDIRIM, Halil İbrahim BÜYÜKBAYRAM