An update of anti-viral treatment of COVID-19

An update of anti-viral treatment of COVID-19

Background/aim: Currently there is not an effective antiviral treatment for COVID-19, but a large number of drugs have been evaluated since the beginning of the pandemic, and many of them have been used for the treatment of COVID-19 despite the preliminary or conflicting results of the clinical trials. We aimed to review and summarize all of the current knowledge on the antivirals for COVID-19. Results: There are 2 main drug groups for SARS-CoV-2: agents that target proteins or RNA of the virus or interfere with proteins or biological processes in the host that support the virus. The main drug groups include inhibitors of viral entry into the human cell (convalescent plasma, monoclonal antibodies, nanobodies, mini proteins, human soluble ACE-2, camostat, dutasteride, proxalutamide, bromhexin, hydroxychloroquine, umifenovir nitazoxanid, niclosamide, lactoferrin), inhibitors of viral proteases (lopinavir/ritonavir, PF-07321332, PF-07304814, GC376), inhibitors of viral RNA (remdesivir, favipiravir, molnupiravir, AT-527, merimepodib, PTC299), inhibitors of host proteins supporting virus (plitidepsin, fluvoxamine, ivermectin), and agents supporting host natural immunity (Interferons). Conclusion: When taking into account the results of all the available laboratory and clinical trials on the subject, monoclonal antibodies seem to be the most effective treatment for COVID-19 at the moment, and high-titer convalescent plasma also could be effective when administered during the early phase of the disease. As lopinavir/ritonavir, hydroxychloroquine, merimepodib, and umifenovir were found to be ineffective in RCTs, they should not be used. Additional studies are needed to define the role of remdesivir, favipiravir, interferons, ivermectin, dutasteride, proxulutamide, fluvoxamine, bromhexine, nitazoxanide, and niclosamid in the treatment of COVID-19. Finally, the results of phase trials are waited to learn whether or not the newer agents such as molnupiravir, PF-07321332, PF-07304814, plitidepsin and AT-527 are effective in the treatment of COVID-19.Key words: SARS-CoV-2, COVID-19, antiviral, treatment

___

  • 1. Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics- -developing a new class of drugs. Nature Review of Drug Discovery 2014;13(10):759-80. doi: 10.1038/nrd4278
  • 2. Dolgin E. The race for antiviral drugs to beat COVID - and the next pandemic. Nature 2021;592(7854):340-343. doi: 10.1038/ d41586-021-00958-4
  • 3. Murgolo N, Therien AG, Howell B, Klein D, Koeplinger K et al. SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development. PLoS Pathogenesis 2021;17(2):e1009225. doi: 10.1371/journal. ppat.1009225
  • 4. Şimşek Yavuz S, Ünal S. Antiviral treatment of COVID-19. Turkish Journal of Medical Sciences. 2020;50(SI-1):611-619. doi: 10.3906/sag-2004-145
  • 5. Zhang Q, Chen CZ, Swaroop M, Xu M, Whang L et al. Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. Cell Discovery2020;6(1):80. doi: https://doi.org/10.1038/s41421-020-00222-5
  • 6. Clausen TM, Sandoval DR, Spliid CB, Pihl J, Perrett HR et al. SARSCoV-2 infection depends on cellular heparan sulfate and ACE2. Cell 2020;183(4):1043–1057. doi: 10.1016/j. cell.2020.09.033
  • 7. Feuillet V, Canard B, Trautmann A. Combining antivirals and immunomodulators to fight COVID-19. Trends in Immunology 2021 ; 42(1):31-44. doi: 10.1016/j.it.2020.11.003
  • 8. Muralidar S, Gopal G, Visaga Ambi S. Targeting the viralentry facilitators of SARS-CoV-2 as a therapeutic strategy in COVID-19. Journal of Medical Virology 2021. doi: 10.1002/ jmv.27019
  • 9. Rojas M, Rodríguez Y, Monsalve DM, Acosta-Ampudia Y, Camacho B et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Reviews 2020;19(7):102554. doi: 10.1016/j.autrev.2020.102554
  • 10. Salazar E, Perez KK, Ashraf M, Chen J, Castillo B et al. Treatment of coronavirus disease 2019 (COVID-19) patients with convalescent plasma. American Journal of Pathology 2020;190(8):1680-1690. doi: 10.1016/j.ajpath.2020.05.014
  • 11. Liu STH, Lin HM, Baine I, Wajnberg A, Gumprecht JP et al. Convalescent plasma treatment of severe COVID-19: a propensity score-matched control study. Nature Medicine 2020 ;26(11):1708-1713. doi: 10.1038/s41591-020-1088-9
  • 12. Liu STH, Aberg JA. Convalescent plasma in patients hospitalised with COVID-19. Lancet 2021;397(10289):2024- 2025. doi: 10.1016/S0140-6736(21)01064-3
  • 13. Janiaud P, Axfors C, Schmitt AM, Gloy V, Ebrahimi F et al. Association of convalescent plasma treatment with clinical outcomes in patients with COVID-19: A systematic review and meta-analysis. Journal of American Medical Association 2021;325(12):1185-1195. doi: 10.1001/jama.2021.2747
  • 14. Libster R, Pérez Marc G, Wappner D, Coviello S, Bianchi A et al. Early high-titer plasma therapy to prevent severe Covid-19 in older adults. New England Journal of Medicine 2021;384(7):610-618. doi: 10.1056/NEJMoa2033700
  • 15. Joyner MJ, Carter RE, Senefeld JW, Klassen SA, Mills JR et al. Convalescent plasma antibody levels and the risk of death from Covid-19. New England Journal of Medicine 2021;384(11):1015-1027. doi: 10.1056/NEJMoa2031893
  • 16. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nature Medicine 2021. doi: 10.1038/s41591-021-01377-8
  • 17. Corti D, Purcell LA, Snell G, Veesler D. Tackling COVID-19 with neutralizing monoclonal antibodies. Cell 2021;184(12):3086- 3108. doi: 10.1016/j.cell.2021.05.005
  • 18. Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J et al. SARSCoV-2 Neutralizing antibody LY-CoV555 in outpatients with Covid-19. New England Journal of Medicine 2021;384(3):229- 237. doi: 10.1056/NEJMoa2029849
  • 19. Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with COVID-19. New England Journal of Medicine 2021;384(3):238-251. doi: 10.1056/NEJMoa2035002
  • 20. ACTIV-3/TICO LY-CoV555 Study Group, Lundgren JD, Grund B, Barkauskas CE, Holland TL et al. A neutralizing monoclonal antibody for hospitalized patients with COVID-19. New England Journal of Medicine 2021; 384(10):905-914. doi: 10.1056/NEJMoa2033130
  • 21. Scully M, Cataland SR, Peyvandi F, Coppo P, Knöbl P et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. Scientific Advices 2019;380(4):335-346. doi: 10.1056/NEJMoa1806311
  • 22. Esparza TJ, Martin NP, Anderson GP, Goldman ER, Brody DL. High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme. Scientific Reports 2020;10(1):22370. doi: 10.1038/s41598-020-79036-0
  • 23. Konwarh R. Nanobodies: Prospects of expanding the gamut of neutralizing antibodies against the vovel Coronavirus, SARSCoV-2. Frontiers Immunology 2020;11:1531. doi: 10.3389/ fimmu.2020.01531
  • 24. Schoof M, Faust B, Saunders RA, Sangwan S, Rezelj V et al. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science 2020;370(6523):1473-1479. doi: 10.1126/science.abe3255
  • 25. Xiang Y, Nambulli S, Xiao Z, Liu H, Sang Z et al. Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science 2020;370(6523):1479-1484. doi: 10.1126/science. abe4747
  • 26. Nambulli S, Xiang Y, Tilston-Lunel NL, Rennick LJ, Sang Z et al. Inhalable nanobody (PiN-21) prevents and treats SARSCoV-2 infections in Syrian hamsters at ultra-low doses. Science Advances 2021;7(22):eabh0319. doi: 10.1126/sciadv.abh0319
  • 27. Cao L, Goreshnik I, Coventry B, Case JB, Miller L et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science 2020; 23;370(6515):426-431. doi: 10.1126/science. abd9909
  • 28. Service RF. A call to arms. Science 2021; 371 (6534): 1092- 1095. doi: 10.1126/science.371.6534.1092
  • 29. Khan A, Benthin C, Zeno B, lbertson TE, Boyd J et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome.Critical Care 2017; 21: 234. doi: 10.1186/s13054-017-1823-x
  • 30. Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020; 181: 905-913. doi: 10.1016/j.cell.2020.04.004
  • 31. Zoufaly A, Poglitsch M, Aberle JH, Hoepler W, Seitz T et al. Human recombinant soluble ACE2 in severe COVID-19. Lancet Respiratory Medicine 2020 Nov;8(11):1154-1158. doi: 10.1016/S2213-2600(20)30418-5
  • 32. Linsky TW, Vergara R, Codina N, Nelson JW, Walker MJ et al. De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science 2020;370(6521):1208-1214. doi: 10.1126/science.abe0075
  • 33. Glasgow A, Glasgow J, Limonta D, Solomon P, Lui I et al. Engineered ACE2 receptor traps potently neutralize SARSCoV-2. Proceedings of National Academy of Sciences USA. 2020;117(45):28046-28055. doi: 10.1073/pnas.2016093117
  • 34. Hoffmann M, Kleine-Weber H, Pöhlmann S. A multibasic cleavage cite in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Molecular Cell 2020;78(4):779- 784.e5. doi: 10.1016/j.molcel.2020.04.022
  • 35. Bestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020;3(9):e202000786. doi: 10.26508/lsa.202000786
  • 36. Pišlar A, Mitrović A, Sabotič J, Pečar Fonović U, Perišić Nanut M et al. The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors. PLoS Pathogens 2020;16(11):e1009013. doi: 10.1371/ journal.ppat.1009013
  • 37. Kielian M. Enhancing host cell infection by SARS-CoV-2. Science 2020;370(6518):765-766. doi: 10.1126/science.abf0732
  • 38. Kyrou I, Randeva HS, Spandidos DA, Karteris E. Not only ACE2-the quest for additional host cell mediators of SARSCoV-2 infection: Neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal Transduction and Targeted Therapy 2021;6(1):21. doi: 10.1038/ s41392-020-00460-9
  • 39. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052
  • 40. Peacock TP, Goldhill DH, Zhou J, Baillon L, Frise R et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nature Microbiololgy 2021. doi: 10.1038/s41564-021-00908-w
  • 41. Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R Jr et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Research 2015;116:76-84. doi: 10.1016/j. antiviral.2015.01.011
  • 42. Hofmann-Winkler H, Moerer O, Alt-Epping S, Bräuer A, Büttner B et al. Camostat mesylate may reduce severity of coronavirus disease 2019 sepsis: A first observation. Critical Care Explorer 2020;2(11):e0284. doi: 10.1097/CCE.0000000000000284
  • 43. Gunst JD, Staerke NB, Pahus MH, Kristensen LH, Bodilsen J et al. Efficacy of the TMPRSS2 inhibitor camostat mesilate in patients hospitalized with Covid-19-a double-blind randomized controlled trial. E Clinical Medicine 2021;35:100849. doi: 10.1016/j.eclinm.2021.100849
  • 44. Mollica V, Rizzo A, Massari F. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future Oncology 2020;16(27):2029-2033. doi: 10.2217/fon-2020-0571
  • 45. McCoy J, Cadegiani FA, Wambier CG, Herrera S, Vaño-Galván S et al. 5-alpha-reductase inhibitors are associated with reduced frequency of COVID-19 symptoms in males with androgenetic alopecia. Journal of the European Academy of Dermatology and Venereology : JEADV 2021;35(4):e243-e246. DOI: 10.1111/ jdv.17021
  • 46. Cadegiani FA, McCoy J, Gustavo Wambier C, Goren A. Early antiandrogen therapy with dutasteride reduces viral shedding, inflammatory responses, and time-to-remission in males with COVID-19: A randomized, double-blind, placebo-controlled interventional trial (EAT-DUTA AndroCoV Trial - Biochemical. Cureus. 2021;13(2):e13047. doi: 10.7759/cureus.13047
  • 47. Cadegiani FA, McCoy J, Gustavo Wambier C, Vaño-Galván S, Shapiro J et al. Proxalutamide significantly accelerates viral clearance and reduces time to clinical remission in patients with mild to moderate COVID-19: Results from a randomized, double-blinded, placebo-controlled trial. Cureus. 2021;13(2):e13492. doi: 10.7759/cureus.13492
  • 48. Ansarin K, Tolouian R, Ardalan M, Taghizadieh A, Varshochi M et al. Effect of bromhexine on clinical outcomes and mortality in COVID-19 patients: A randomized clinical trial. Bioimpacts 2020;10(4):209-215. doi: 10.34172/bi.2020.27
  • 49. Tolouian R, Mulla ZD, Jamaati H, Babamahmoodi A, Marjani M et al. Effect of bromhexine in hospitalized patients with COVID-19. Journal of Investigational Medicine 2021:jim-2020- 001747. doi: 10.1136/jim-2020-001747
  • 50. Hoffmann M, Mösbauer K, Hofmann-Winkler H, Kaul A, Kleine-Weber H et al. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature. 2020 Sep;585(7826):588-590. doi: 10.1038/s41586-020-2575-3
  • 51. Karlsen APH, Wiberg S, Laigaard J, Pedersen C, Rokamp KZ et al. A systematic review of trial registry entries for randomized clinical trials investigating COVID-19 medical prevention and treatment. PLoS One. 2020;15(8):e0237903. doi: 10.1371/ journal.pone.0237903
  • 52. Axfors C, Schmitt AM, Janiaud P, Van’t Hooft J, Abd-Elsalam S et al. Mortality outcomes with hydroxychloroquine and chloroquine in COVID-19 from an international collaborative meta-analysis of randomized trials. Nature Communication 2021;12(1):2349. doi: 10.1038/s41467-021-22446-z
  • 53. Bartoszko JJ, Siemieniuk RAC, Kum E, Qasim A, Zeraatkar D et al. Prophylaxis against covid-19: living systematic review and network meta-analysis. British Medical Journal 2021 26;373:n949. doi: 10.1136/bmj.n949
  • 54. Wang X, Cao R, Zhang H, Liu J, Xu M et al. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discovery 2020 ; 6:28. doi: 10.1038/s41421-020-0169-8
  • 55. Huang D, Yu H, Wang T, Yang H, Yao R et al. Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Journal of Medical Virolology 2021;93(1):481-490. doi: 10.1002/jmv.26256
  • 56. Lokhande AS, Devarajan PV. A review on possible mechanistic insights of Nitazoxanide for repurposing in COVID-19. European Journal of Pharmacology 2021;891:173748. doi: 10.1016/j.ejphar.2020.173748
  • 57. Jeon S, Ko M, Lee J, Choi I, Byun SY, Park S et al. Identification of antiviral drug candidates against SARS-CoV-2 from FDAapproved drugs. Antimicrobial Agents and Chemotherapy. 2020; 64(7): e00819–20. https://doi.org/10.1128/AAC.00819-20
  • 58. Brunaugh AD, Seo H, Warnken Z, Ding L, Seo SH et al. Development and evaluation of inhalable composite niclosamide-lysozyme particles: A broad-spectrum, patientadaptable treatment for coronavirus infections and sequalae. PLoS One. 2021;16(2):e0246803. doi: 10.1371/journal. pone.0246803
  • 59. Backer V, Sjöbring U, Sonne J, Weiss A, Hostrup M et al. A randomized, double-blind, placebo-controlled phase 1 trial of inhaled and intranasal niclosamide: A broad spectrum antiviral candidate for treatment of COVID-19. Lancet Regional Health Europe 2021;4:100084. doi: 10.1016/j.lanepe.2021.100084
  • 60. Hu Y, Meng X, Zhang F, Xiang Y, Wang J. The in vitro antiviral activity of lactoferrin against common human coronaviruses and SARS-CoV-2 is mediated by targeting the heparan sulfate co-receptor. Emerging Microbes Infection 2021;10(1):317-330. doi: 10.1080/22221751.2021.1888660
  • 61. Banerjee R, Perera L, Tillekeratne LMV. Potential SARSCoV-2 main protease inhibitors. Drug Discovery Today 2021;26(3):804-816. doi: 10.1016/j.drudis.2020.12.005
  • 62. Choy KT. Wong AY, Kaewpreedee P, Sia SF, Chen D, Pui K et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Research 2020; 178: 104786. doi: 10.1016/j.antiviral.2020.104786
  • 63. Cao B, Wang Y, Wen D, Liu W, Wang J et al. A trial of lopinavirritonavir in adults hospitalized with severe COVID-19. New England Journal of Medicine 2020;382(19):1787-1799. doi: 10.1056/NEJMoa2001282
  • 64. RECOVERY Collaborative Group. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2020;396(10259):1345–52. doi: 10.1016/S0140-6736(20)32013-4
  • 65. WHO Solidarity Trial Consortium, Pan H, Peto R, HenaoRestrepo AM, Preziosi MP et al. Repurposed antiviral drugs for COVID-19 - Interim WHO Solidarity trial results. New England Journal of Medicine 2021;384(6):497-511. doi: 10.1056/NEJMoa2023184
  • 66. Schoergenhofer C, Jilma B, Stimpfl T, Karolyi M, Zoufaly A. Pharmacokinetics of lopinavir and ritonavir in patients hospitalized with coronavirus disease 2019 (COVID-19). Annals of Internal Medicine 2020;173(8):670. doi: 10.7326/ M20-1550
  • 67. Marzolini C, Stader F, Stoeckle M, Franzeck F, Egli A et al.Effect of systemic inflammatory response to SARS-CoV-2 on lopinavir and hydroxychloroquine plasma concentrations. Antimicrobial Agents and Chemotherapy 2020;64(9) . doi: 10.1128/AAC.01177-20
  • 68. Ma C, Sacco MD, Hurst B, Townsend JA, Hu Y et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Research 2020;30(8):678-692. doi: 10.1038/s41422-020-0356-z
  • 69. Rathnayake AD, Zheng J, Kim Y, Perera KD, Mackin S et al. 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV-infected mice. Sciences Translational Medicine 2020;12(557):eabc5332. doi: 10.1126/scitranslmed.abc5332
  • 70. Cáceres CJ, Cardenas-Garcia S, Carnaccini S et al. Efficacy of GC-376 against SARS-CoV-2 virus infection in the K18 hACE2 transgenic mouse model. Scientific Reports. 2021;11(1):9609. doi: 10.1038/s41598-021-89013-w
  • 71. Hoffman RL, Kania RS, Brothers MA, Davies JF, Ferre RA et al. Discovery of ketone-based covalent inhibitors of coronavirus 3CL proteases for the potential therapeutic treatment of COVID-19J. Journal of Medical Chemistry 2020; 63(21): 12725–12747 doi: 10.1021/acs.jmedchem.0c01063
  • 72. Coomes EA. Haghbayan H. Favipiravir, an antiviral for COVID-19? J Antimicrobial Agents and Chemotherapy 2020; 75: 2013–2014 doi:10.1093/jac/dkaa171
  • 73. Madelain V , Oestereich L, Graw F, Huyen T, Nguyen T, Lamballerie S et al. Ebola virus dynamics in mice treated with favipiravir. Antiviral Researches 2015;123:70-7. doi: 10.1016/j. antiviral.2015.08.015
  • 74. Madelain V, Nguyen TH, Olivo A, Lamballerie X, Guedj J et al. Ebola virus infection: Review of the pharmacokinetic and pharmacodynamic properties of drugs considered for testing in human efficacy trials. Clinical Pharmacokinetics 2016;55(8):907-23.doi: 10.1007/s40262-015-0364-1
  • 75. Du YX, Chen XP. Favipiravir: Pharmacokinetics and concerns about clinical trials for 2019-nCoV infection. Clinical Pharmacological Therapies 2020; 108: 242-7. doi: 10.1002/ cpt.1844
  • 76. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proceeding of Japanies Academy Series B 2017; 93 (7): 449-62. doi: 10.2183/ pjab.93.027
  • 77. Kaptein SJF, Jacobs S, Langendries L, Seldeslachts L, Ter Horst S et al. Favipiravir at high doses has potent antiviral activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks activity. Proceedings of the National Academy of Sciences USA 2020;117(43):26955-26965. doi: 10.1073/ pnas.2014441117
  • 78. Nguyen TH, Guedj J, Anglaret X, Laouénan C, Madelain V et al. Favipiravir pharmacokinetics in Ebola-Infected patients of the JIKI trial reveals concentrations lower than targeted. PLoS Neglected Tropical Diseases 2017;11(2):e0005389. doi: 10.1371/journal.pntd.0005389
  • 79. Doi Y, Hibino M, Hase R, Yamamoto M, Kasamatsu Y et al. A Prospective, randomized, open-label trial of early versus late favipiravir therapy in hospitalized patients with COVID-19. Antimicrobial Agents Chemotherapy. 2020 17;64(12):e01897- 20. doi: 10.1128/AAC.01897-20
  • 80. Eloy P, Solas C, Touret F, Mentré F, Malvy D et al. Dose rationale for favipiravir use in patients infected with SARSCoV-2. Clinical Pharmacological Therapy. 2020;108(2):188. doi: 10.1002/cpt.1877
  • 81. Irie K, Nakagawa A, Fujita H, Tamura R, Eto M et al. Pharmacokinetics of favipiravir in critically ill patients with COVID-19. Clinical Translational Science 2020;13(5):880-885. doi: 10.1111/cts.12827
  • 82. Driouich JS, Cochin M, Lingas G, Moureau G, Touret F et al. Favipiravir antiviral efficacy against SARS-CoV-2 in a hamster model. Nature Communications 2021;12(1):1735. doi: 10.1038/s41467-021-21992-w
  • 83. Lou Y, Liu L, Yao H, Hu X, Su J et al. Clinical outcomes and plasma concentrations of baloxavir marboxil and favipiravir in COVID-19 Patients: An exploratory randomized, controlled trial. European Journal of Pharmacological Sciences 2021 1;157:105631 doi: 10.1016/j.ejps.2020.105631.
  • 84. Chen PJ, Chao CM, Lai CC. Clinical efficacy and safety of favipiravir in the treatment of COVID-19 patients. Journal of Infection 2021;82(5):186-230. doi: 10.1016/j.jinf.2020.12.005
  • 85. Hassanipour S, Arab-Zozani M, Amani B, Heidarzad F, Fathalipour M et al. The efficacy and safety of favipiravir in treatment of COVID-19: a systematic review and metaanalysis of clinical trials. Scientific Reports 2021;11:11022. doi: 10.1038/s41598-021-90551-6
  • 86. Manabe T, Kambayashi D, Akatsu H, Kudo K. Favipiravir for the treatment of patients with COVID-19: a systematic review and meta-analysis. British MC Infectious Diseases 2021;21(1):489. doi: 10.1186/s12879-021-06164-x
  • 87. Ueda M, Tanimoto T, Murayama A, Ozaki A, Kami M. Japan’s drug regulation during the COVID-19 pandemic: Lessons from a case study of favipiravir. Clinical Pharmacological Therapy 2021. doi: 10.1002/cpt.2251
  • 88. Wang M, Cao R, Zhang L, Yang X, Liu J et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research 2020; 30: 269- 71. doi: 10.1038/s41422-020-0282-0
  • 89. Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP et al. Coronavirus susceptibility to the antiviral remdesivir (GS5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 2018;9(2):e00221-18. doi: 10.1128/ mBio.00221-18
  • 90. Amirian ES, Levy JK. Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health 2020;9:100128. doi: 10.1016/j. onehlt.2020.100128
  • 91. Williamson BN, Feldmann F, Schwarz B, Meade-White K, Porter DP et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature 2020;585(7824):273-276. doi: 10.1038/s41586-020-2423-5
  • 92. Wang Y, Zhang D, Du G, Du R, Zhao J et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebocontrolled, multicentre trial. Lancet. 2020;395(10236):1569- 1578. doi: 10.1016/S0140-6736(20)31022-9
  • 93. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS et al. Remdesivir for the treatment of COVID-19 - final report. New England Journal of Medicine 2020;383(19):1813-1826. doi: 10.1056/NEJMoa2007764
  • 94. Spinner CD, Gottlieb RL, Criner GJ, Lopes JRA, Cattelan AM et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: A randomized clinical trial. Journal of American Medical Association. 2020;324(11):1048–1057. doi:10.1001/jama.2020.16349
  • 95. Pruijssers AJ, Denison MR. Nucleoside analogues for the treatment of coronavirus infections. Current Opinion in Virololgy 2019;35:57-62. doi: 10.1016/j.coviro.2019.04.002
  • 96. Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ et al. An orally bioavailable broad-spectrum antiviral inhibits SARSCoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Science Translational Medicine 2020;12(541):eabb5883. doi: 10.1126/scitranslmed.abb5883
  • 97. Cox RM, Wolf JD, Plemper RK. Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARSCoV-2 transmission in ferrets. Nature Microbiology 2021 ;6(1):11-18. doi: 10.1038/s41564-020-00835-2
  • 98. Mungur O, Berliba E, Bourgeois S, Cardona M, Jucov A et al. A combination of AT-527, a pan-genotypic guanosine nucleotide prodrug, and daclatasvir was well-tolerated and effective in HCV-infected subjects. Journal of Hepatology 2020.73:S357. https://doi.org/10.1016/S0168-8278(20)31210-1
  • 99. Good SS, Westover J, Jung KH, Zhou XJ, Moussa A et al. AT527, a Double prodrug of a guanosine nucleotide analog is a potent inhibitor of SARS-CoV-2 in vitro and a promising oral antiviral for treatment of COVID-19. Antimicrobial Agents and Chemotherapy 2021;65(4):e02479-20. doi: 10.1128/ AAC.02479-20
  • 100. Bukreyeva N, Mantlo Ek, Sattler RA, Huang C, Paessler S et al. The IMPDH inhibitor merimepodib suppresses SARS-CoV-2 replication in vitro. bioRxiv preprint 202; doi: https://doi. org/10.1101/2020.04.07.028589
  • 101. Luban J, Sattler RA, Mühlberger E, Graci JD, Cao L et al. The DHODH inhibitor PTC299 arrests SARS-CoV-2 replication and suppresses induction of inflammatory cytokines. Virus Researchwong 2021;292:198246. doi: 10.1016/j. virusres.2020.198246
  • 102. Blanchard EL, Vanover D, Bawage SS, Tiwari PM, Rotolo L et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nature Biotechnology 2021;39(6):717-726. doi: 10.1038/s41587-021-00822-w
  • 103. Wong JP, Damania B. SARS-CoV-2 dependence on host pathways. Science. 2021;371(6532):884-885. doi: 10.1126/ science.abg6837
  • 104. White KM, Rosales R, Yildiz S, Kehrer T, Miorin L et al. Plitidepsin has potent preclinical efficacy against SARSCoV-2 by targeting the host protein eEF1A. Science 2021;371(6532):926-931. doi: 10.1126/science.abf4058
  • 105. Martinez MA. Plitidepsin: a repurposed drug for the treatment of COVID-19. Antimicrobial Agents and Chemotherapy 2021;65(4):e00200-21. doi: 10.1128/AAC.00200-21
  • 106. Köhler CA, Freitas TH, Stubbs B, Maes M, Solmi M et al. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: systematic review and meta-analysis. Molecular Neurobiology 2018;55:4195–206. doi: 10.1007/s12035-017-0632-1
  • 107. Zimniak M, Kirschner L, Hilpert H, Geiger N, Danov O et al. The serotonin reuptake inhibitor fluoxetine inhibits SARS-CoV-2 in human lung tissue. Scientific Reports 2021;11(1):5890. doi: 10.1038/s41598-021-85049-0
  • 108. Hoertel N, Sánchez-Rico M, Vernet R, Beeker N, Jannot AS et al. Association between antidepressant use and reduced risk of intubation or death in hospitalized patients with COVID-19: results from an observational study. Molecular Psychiatry. 2021; doi: 10.1038/s41380-021-01021-4
  • 109. Lenze EJ, Mattar C, Zorumski CF, Stevens A, Schweiger J et al. Fluvoxamine vs placebo and clinical deterioration in outpatients with symptomatic COVID-19: A randomized clinical trial. The Journal of the American Medical Association 2020;324(22):2292-2300. doi: 10.1001/jama.2020.22760
  • 110. Carpinteiro A, Edwards MJ, Hoffmann M, Kochs G, Gripp B et al. Pharmacological inhibition of acid sphingomyelinase prevents uptake of SARS-CoV-2 by epithelial cells. Cell Reports Medicine. 2020;1:100142. doi: 10.1016/j.jbc.2021.100701
  • 111. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research 2020; 178: 104787. doi:10.1016/j.antiviral.2020.104787
  • 112. Momekov G, Momekova D. Ivermectin as a potential COVID-19 treatment from the pharmacokinetic point of view: antiviral levels are not likely attainable with known dosing regimens. Biotechnology & Biotechnological Equipment 2020; 34:1, 469-474. doi:10.1080/13102818.2020.1775118
  • 113. Bray M, Rayner C, Noel F, Jans D, Wagstaff K. Ivermectin and COVID-19: A report in Antiviral Research, widespread interest, an FDA warning, two letters to the editor and the authors’ responses. Antiviral Research 2020; 178: 104805. doi: 10.1016/j.antiviral.2020.104805
  • 114. Bartoszko JJ, Siemieniuk RAC, Kum E, Qasim A, Zeraatkar D et al. Prophylaxis against covid-19: living systematic review and network meta-analysis. British Medical Journal 2021;373:n949. doi: 10.1136/bmj.n949
  • 115. Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M et al. Inborn errors of type I IFN immunity in patients with lifethreatening COVID-19. Science 2020;370(6515):eabd4570. doi: 10.1126/science.abd4570
  • 116. Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH et al. Autoantibodies against type I IFNs in patients with lifethreatening COVID-19. Science. 2020;370(6515):eabd4585. doi: 10.1126/science.abd4585
  • 117. Monk PD, Marsden RJ, Tear VJ, Brooks J, Batten TN et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet Respiratory Medicine. 2021;9(2):196-206. doi: 10.1016/s2213- 2600(20)30511-7
  • 118. Lopez L, Sang PC, Tian Y, Sang Y. Dysregulated interferon response underlying severe COVID-19. Viruses. 2020;12(12):1433. doi: 10.3390/v12121433
  • 119. Alavi Darazam I, Shokouhi S, Pourhoseingholi MA, Naghibi Irvani SS, Mokhtari M et al. Role of interferon therapy in severe COVID-19: the COVIFERON randomized controlled trial. Scientific Reports 2021;11(1):8059. doi: 10.1038/s41598-021- 86859-y
  • 120. Nakhlband A, Fakhari A, Azizi H. Interferon-beta offers promising avenues to COVID-19 treatment: a systematic review and meta-analysis of clinical trial studies. Naunyn Schmiedebergs Archievs of Pharmacology 2021;394(5):829- 838. doi: 10.1007/s00210-021-02061-x