Carriage of mobilizable plasmid-mediated beta-Lactamase gene in ampicillin-resistant Escherichia coli strains with origin of normal fecal flora

Amaç: Bu çalışmanın amacı, insanın normal fekal florasından izole edilen ampisiline dirençli (Ampr) Escherichia coli izolatlarında β-laktamaz genlerinin taşıyıcılığının araştırılmasıydı. Yöntemler: En az üç ay boyunca antibiyotik kullanmamış 21 sağlıklı kişinin dışkı örneklerinden izole edilen 10 Ampr E. coli suşu TEM-, SHV-, ve OXA-tipi β-laktamaz genleri açısından polimeraz zincir reaksiyonu (PZR) ile tarandı. Suşların antibiyotiklere hassasiyetleri disk difüzyon metodu ile, ampisilinin suşlara karşı minimum inhibitör konsantrasyonu (MİK) agar sulandırım metodu ile belirlendi. Plazmit aktarma deneyleri sıvıda çiftleşme metodu ile yapıldı. Plazmit DNA'sı alkali lizis tekniği ile izole edildi. Hibridizasyon deneylerinde digoxygenin ile işaretli TEM-1 probu kullanıldı. Bulgular: On suşun ikisinin PZR ile yalnızca TEM-tipi geni (blaTEM) taşıyıcısı olduğu bulundu ve ampisiline karşı dirençleri konjugatif olarak bir rekombinant E. coli K-12 suş C600'e aktarıldı. Ampisilinin iki orijinal suşa ve transkonjugantlarına karşı MİK'leri >512 µg/mL olarak tespit edildi. Ayrıca, bu iki suş ve transkonjugantlarında β-laktamaz inhibitör direnci de gözlendi. Digoxygenin ile işaretli TEM-1 DNA probu TEM-geni taşıyan iki organizmadan izole edilmiş olan bazı non-konjugatif fakat taşınabilir plazmit DNA'larına hibridize oldu. Sonuç: Bu sonuçlar; barsak ortamında β-laktamaz geni taşıyan kommensal E. coli suşlarının direnç determinantlarını küçük direnç plazmitleri (R plazmit) üzerinde taşıyabildiğini ve yakın zamanda antibiyotik kullanılmasa dahi bunların toplumda direnç genlerinin potansiyel bir rezervuarı haline gelebileceğini göstermektedir.

Normal fekal flora kökenli ampisiline dirençli Escherichia coli suşlarında taşınabilir plazmit aracılı beta-laktamaz gen taşıyıcılığı

Aim: The aim of this study was to investigate the carriage of β-lactamase genes in ampicillin-resistant (Ampr) Escherichia coli (E. coli) isolates from human normal fecal flora. Methods: Ten Ampr E. coli strains isolated from the stool samples of 21 healthy persons with no antibiotic use during at least three months were screened for TEM-, SHV-, or OXA-type β-lactamase genes by polymerase chain reaction (PCR). The susceptibility of the strains to antibiotics was determined by disk diffusion method, and minimum inhibitory concentration (MIC) of ampicillin to the strains was determined by agar dilution method. Plasmid transfer assays were performed by broth mating technique. Plasmid DNA was isolated by alkaline lysis method. Digoxigenin-labeled TEM-1 probe was used in hybridization assays. Results: Two of 10 strains were found to be carrier for only TEM-type β-lactamase gene (blaTEM) by PCR, and their resistances to ampicillin were conjugatively transferred to a recombinant E. coli K-12 strain C600. MIC of ampicillin to two representative strains and their transconjugants was detected as >512 µg/ml. Moreover, β-lactamase inhibitor resistance was also observed in these two strains and their transconjugants. Digoxigenin-labeled TEM-1 DNA probe was hybridized to some non-conjugative but mobilizable plasmid DNAs purified from two of the TEM-gene-carrying organisms. Conclusions: These results indicate that commensal E. coli strains carrying β-lactamase gene in the bowel environment could retain resistance determinants on small-sized resistance plasmids (R plasmids) and become a potential reservoir for resistance genes in the community, even in the absence of recent antibiotic consumption.

___

  • 1. Calva JJ, Sifuentes-Osornio J, Ceron C. Antimicrobial resistance in fecal flora: longitudinal community-based surveillance of children from urban Mexico. Antimicrob Agents Chemother 1996; 40: 1699–1702.
  • 2. Hart CA, Kariuki S. Antimicrobial resistance in developing countries. Br Med J 1998; 317: 647–650.
  • 3. Komatsu M, Aihara M, Shimakawa K, Yamanaka T, Matsuo S. Detection of extended spectrum β-lactamases producing Enterobacteriaceae in feces. Kansenshogaku Zasshi 2000; 74: 250–258.
  • 4. Shanahan PMA, Thomson CJ, Amyes SGB. β-lactam resistance in normal faecal flora from South Africa. Epidemiol Infect 1995; 115: 243–253.
  • 5. Franiczek R, Sobieszczanska B, Grabowski M, Mowszet K, Pytrus T. Occurrence of extended-spectrum β-lactamases among Escherichia coli isolates from hospitalized and healthy children. Folia Microbiol 2003; 48: 243–247.
  • 6. Infante B, Grape M, Larsson M, Kristiansson C, Pallecchi L, Rossolini GM et al. Acquired sulphonamide resistance genes in faecal Escherichia coli from healthy children in Bolivia and Peru. Int J Antimicrob Agents 2005; 25: 308–312.
  • 7. Levin BR, Lipsitch M, Perrot V, Schrag S, Antia R, Simonsen L et al. The population genetics of antibiotic resistance. Clin Infect Dis 1997; 24: S9–16.
  • 8. Levy S, Marshall B, Schleuderberg S, Rowe B, Davis J. High frequency of antibiotic resistance in human fecal flora. Antimicrob Agents Chemother 1988; 32: 1801–1806.
  • 9. Österblad M, Hakanen A, Manninen R, Leistevuo T, Peltonen R, Meurman O et al. A between-species comparison of antimicrobial resistance in enterobacteria in fecal flora. Antimicrob Agents Chemother 2000; 44: 1471–1484.
  • 10. Komatsu M, Aihara M, Shimakawa K, Yamanaka T, Matsuo S. Detection of extended spectrum β-lactamases producing Enterobacteriaceae in feces. Kansenshogaku Zasshi 2000; 74: 250–258.
  • 11. Baquero F, Negri MC, Morosini MI, Blazquez J. Antibioticselective environments. Clin Infect Dis 1998, 27(Suppl. 1): S5–11.
  • 12. Livermore DM. β-lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995; 8: 557–584.
  • 13. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility tests. M2-A6 Approval Standard. Wayne, Pa: NCCLS, 1997.
  • 14. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey’s Manual of Determinative Bacteriology. 9th ed. Baltimore: Williams and Wilkins, 1994.
  • 15. Balows A, Hausler WJ, Herrmann KL, Isenberg HD, Shadomy HJ. Manual of clinical microbiology. 5th ed. Washington (DC): American Society of Microbiology; 1991.
  • 16. Rice LB, Willey SH, Papanicolaou GA, Medeiros AA, Eliopoulos GM, Moellering RC Jr et al. Outbreak of ceftazidime resistance caused by extended-spectrum β-lactamases at a Massachusetts chronic care facility. Antimicrob Agents Chemother 1990; 34: 2193–2199.
  • 17. National Committee for Clinical Laboratory Standards. Performance standards for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. M7-A4 Approval Standard. Wayne, Pa: NCCLS, 1997.
  • 18. Kado CI, Liu ST. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 1981; 145: 1365–1373.
  • 19. Arlet G, Philippon A. Construction by polymerase chain reaction and use of intragenic DNA probes for three main types of transferable b-lactamases (TEM, SHV, CARB). FEMS Microbiol Lett 1991; 82: 19–26.
  • 20. Ouellette M, Bissonnette L, Roy PH. Precise insertion of antibiotic resistance determinants into Tn21-like transposons: nucleotide sequence of the OXA-1 β-lactamase genes. Proc Natl Acad Sci USA 1987; 84: 7378–7382.
  • 21. Southern EM. Detection of specific sequences among DNA fragments separated by agarose gel electrophoresis. J Mol Biol 1975; 98: 503–517.
  • 22. Okeke IN, Lamikanra A, Edelman R. Socioeconomic and behavioral factors leading to acquired bacterial resistance to antibiotics in developing countries. Emerg Infect Dis 1999; 5: 18–27.
  • 23. Degener JE, Smit ACW, Michel MF, Valkenburg HA, Muller L. Faecal carriage of aerobic gram-negative bacilli and drug resistance of Escherichia coli in different age-groups in Dutch urban communities. J Med Microbiol 1983; 16: 139–145.
  • 24. Bonten M, Stobberingh E, Philips J, Houben A. High prevalence of antibiotic resistant Escherichia coli in faecal samples of students in the south-east of The Netherlands. J Antimicrob Chemother 1990; 26: 585–592.
  • 25. Shears P, Suliman G, Hart CA. Occurrence of multiple antibiotic resistance and R plasmids in Enterobacteriaceae isolated from children in the Sudan. Epidem Inf 1988; 100: 73–81.
  • 26. Okeke IN, Fayinka ST, Lamikanra A. Antibiotic resistance in Escherichia coli from Nigerian students, 1986-1998. Emerg Infect Dis 2000; 6: 393–396.
  • 27. Gulay Z, Bicmen M, Amyes SG, Yulug N. β-lactamase patterns and betalactam/clavulanic acid resistance in Escherichia coli isolated from fecal samples from healthy volunteers. J Chemother 2000; 12: 208–215.
  • 28. Shanahan PMA, Thomson CJ, Amyes SGB. β-lactam resistance in aerobic faecal flora from general practice patients in the UK. Eur J Clin Microbiol Infect Dis 1994; 13: 760–763.
  • 29. Murray BE, Alvarodo T, Kim HH, Vorachit M. Increasing resistance to trimethoprim-sulfamethoxazole among isolates of Escherichia coli in developing countries. J Infect Dis 1985; 152: 1107–1113.
  • 30. Martinez JL, Cercenado E, Rodriguez-Creixems M, Vicente-Perez MF, Delgado-Iribarren A, Baquero F. Resistance to βlactam/clavulanate. Lancet 1987; ii: 1473.
  • 31. Pitout J, Sanders CC, Sanders WE. Antimicrobial resistance with focus on β-lactam resistance in Gram-negative bacilli. Am J Med 1997; 103: 51–59.
  • 32. Balis E, Vatopoulos AC, Kanelopoulou M, Mainas E, Hatzoudis G, Kontogianni V et al. Indications of in vivo transfer of an epidemic R plasmid from Salmonella enteritidis to Escherichia coli of the normal human gut flora. J Clin Microbiol 1996; 34: 977–979.
  • 33. Heritage J, Ransome N, Chambers PA, Wilcox MH. A comparison of culture and PCR to determine the prevalence of ampicillinresistant bacteria in faecal flora of general practice patients. J Antimicrob Chemother 2001; 48: 287–289.
  • 34. Özgümüfl OB, Tosun ‹, Aydın F, Kılıç AO. Non-conjugative plasmids encoding TEM-type β-lactamase in clinical isolates of Escherichia coli. ‹nfek Derg 2002; 16: 329-333.
  • 35. Rawlings DE, Tietze E. Comparative biology of IncQ and IncQ-like plasmids. Microbiol Mol Biol Rev 2001; 65: 481–496.
  • 36. Roy PH. Horizontal transfer of genes in bacteria. Microbiol Today 1999; 26: 168– 170.
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Carriage of Mobilizable Plasmid-Mediated b-Lactamase Gene in Ampicillin-Resistant Escherichia coli Strains with Origin of Normal Fecal Flora

Osman Birol ÖZGÜMÜŞ

The Prevalence of Pleural Effusion in Pregnant Women: A Pilot Study

Özcan BALAT, Öner DİKENSOY, Ebru DİKENSOY

Exposure of Rats to Whole Body Gamma Rays Induces Early Alterations in Biliary Secretion

Ihsan HADAJAT, Omar Mohamed ABDEL-SALAM, Ayman Ragab AIUOMY, Siham EL-SHINAWY, Mahmoud S. ARBID

In Vitro Effects of Some Antibiotic Drugs on Bovine Lactoperoxidase Enzyme

Murat ÇANKAYA, Melda ŞİŞECİOĞLU, Özgür YÖRÜK, Hasan ÖZDEMİR

A Case Report of Ecstasy-induced Acute Hepatic Failure

Sami KINIKLI, Ali Pekcan DEMİRÖZ, Zeliha KOÇAK, Ruhsar Gül YILMAZ, Hasan IRMAK, Cemal BULUT

Computer Assisted Image Analysis of Peroxidase Stained Endometrial Tissue

Ahmet Barış TOPRAK, Kemal ÖZBİLGİN, Seda VATANSEVER

Aphasia in Hemiplegic Patients

Münire MENGÜLLÜOĞLU, Serpil ALLUŞOĞLU, Neşe ÖZGİRİN, Nermin ALTINOK, Bülent GÜNDÜZ, Asuman DOĞAN

Can Modified Dukes' Classification be Used in Gastric Cancer Staging?

Halil ÖZGÜÇ

Study of Elements, Antioxidants and Lipid Peroxidation in Hemodialysis Patients

Esma MENEVŞE, Ali Muhtar TİFTİK, Abdullah SİVRİKAYA, Süleyman TÜRK, Emrah KARAGÖZOĞLU

Carriage of mobilizable plasmid-mediated beta-Lactamase gene in ampicillin-resistant Escherichia coli strains with origin of normal fecal flora

Osman Birol ÖZGÜMÜŞ, Murat ERTÜRK, Faruk AYDIN, İlknur TOSUN, Ali Osman KILIÇ