Assessment of fragmented QRS formation and its relationship with left ventricular hypertrophy in nonhypertensive acromegaly patients

Assessment of fragmented QRS formation and its relationship with left ventricular hypertrophy in nonhypertensive acromegaly patients

Background/aim: It is known that the presence of fragmented QRS (fQRS) on electrocardiography (ECG) is associated with cardiovascular events. The aim of this study was the evaluation of fQRS formation and its relationship with the left ventricular hypertrophy (LVH) parameters in acromegaly patients. Materials and methods: In total, 47 previously diagnosed with non-hypertensive acromegaly patients and 48 control subjects were included in the study. ECG and transthoracic echocardiography (TTE) were performed for each participant. Acromegaly patients were divided into two groups according to the fQRS formation on the ECG. Left ventricular wall thicknesses, and left atrial diameter (LAD), left ventricular mass (LVM), left ventricular mass index (LVMi), and relative wall thickness (RWT) were obtained. Results: In control group 5 (10.4%) and in acromegaly group 17 (36.2%) patients had fQRS on ECG (p = 0.003). LAD [36.0 (34.0–38.0) vs. 38.0 (35.0–41.0) mm, p < 0.001], LVM [155.27 ± 27.00 vs. 173.0 (153.0–235.0) g, p < 0.001], LVMi [83.12 ± 13.19 vs. 92.0 (83.0–118.0) g/m², p < 0.001] and RWT [0.39 ± 0.03 vs. 0.43 (0.41–0.45), p = 0.001] were significantly higher in patients with acromegaly. Disease duration was significantly higher (11.59 ± 1.3 vs. 8.2 ± 1.8 years, p < 0.001) in the fQRS (+) group. LAD [41.0 (39.0–42.5) vs. 37.0 (34.7– 38.0) mm, p < 0.001], LVM [219.0 (160.5–254.5) vs. 164.0 (153.0–188.0) g, p = 0.017], LVMi [117.0 (92.5–128.5) vs. 86.0 (82.0–100.2) g/m², p = 0.013] and RWT [0.44 (0.42–0.49) vs. 0.43 (0.40–0.44), p = 0.037] were significantly higher in fQSR (+) acromegaly patients. In multivariate logistic regression analysis, disease duration (odds ratio: 10.05, 95% CI: 1.099–92.012, p = 0.041) and LAD (odds ratio: 2.19, 95% CI: 1.030–4.660, p = 0.042) were found to be the independent predictors of fQRS formation. Conclusion: The results of our study revealed that fQRS (+) acromegaly patients had increased LVH parameters compared to fQRS (-) patients.Key words: Acromegaly, fragmented QRS, left ventricular hypertrophy, left ventricular mass

___

  • 1. Lopez-Velasco R, Escobar-Morreale HF, Vega B, Villa E, Sancho JM et al. Cardiac involvement in acromegaly: specific myocardiopathy or consequence of systemic hypertension? The Journal of Clinical Endocrinology & Metabolism 1997; 82 (4): 1047-1053. doi:10.1210/jcem.82.4.3876
  • 2. Dural M, Kabakci G, Cinar N, Erbas T, Canpolat U et al. Assessment of cardiac autonomic functions by heart rate recovery, heart rate variability and QT dynamicity parameters in patients with acromegaly. Pituitary 2012; 17 (2): 163-170. doi: 10.1007/s11102-013-0482-4
  • 3. Colao A, Ferone D, Marzullo P, Lombardi G. Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocrine Reviews 2004; 25 (1): 102-152. doi:10.1210/er.2002-0022
  • 4. Lopes MB. Growth hormone-secreting adenomas: pathology and cell biology. Neurosurgical Focus 2010; 29 (4): E2. doi:10.3171/2010.7.FOCUS10169
  • 5. Colao A, Pivonello R, Grasso LF, Auriemma RS, Galdiero M et al. Determinants of cardiac disease in newly diagnosed patients with acromegaly: results of a 10 year survey study. European Journal of Endocrinology 2011; 165 (5): 713-721. doi: 10.1530/ EJE-11-0408
  • 6. Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. New England Journal of Medicine 1999; 341 (17): 1276-1283. doi: 10.1056/NEJM199910213411706
  • 7. Wahlander H, Isgaard J, Jennische E, Friberg P. Left ventricular insulin-like growth factor I increases in early renal hypertension. Hypertension 1992 19 (1): 25-32. doi: 10.1161/01.hyp.19.1.25
  • 8. Fu ML, Tornell J, Schulze W, Hoebeke J, Isaksson OG et al. Myocardial hypertrophy in transgenic mice overexpressing the bovine growth hormone (bGH) gene. Journal of Internal Medicine 2999; 247 (5): 546-552. doi:10.1046/j.1365- 2796.2000.00651.x
  • 9. Goldberg MD, Vadera N, Yandrapalli S, Frishman WH. Acromegalic cardiomyopathy: an overview of risk factors. Clinical Manifestations, and Therapeutic Options. Cardiology in Review 2018; 26 (6): 307-311. doi: 10.1097/ CRD.0000000000000215
  • 10. Guo X, Gao L, Zhang S, Li Y, Wu Y et al. Cardiovascular system changes and related risk factors in acromegaly patients: a casecontrol study. International Journal of Endocrinology 2015: 573643. doi:10.1155/2015/573643
  • 11. Akdeniz B, Gedik A, Turan O, Ozpelit E, Ikiz AO et al. Evaluation of left ventricular diastolic function according to new criteria and determinants in acromegaly. International Heart Journal 2012; 53 (5): 299-305. doi:10.1536/ihj.53.299
  • 12. Jurcut R, Galoiu S, Florian A, Vladaia A, Ionita OR et al. Quantifying subtle changes in cardiovascular mechanics in acromegaly: a Doppler myocardial imaging study. Journal of Endocrinological Investigation 2014; 37 (11): 1081-1090. doi:10.1007/s40618-014-0147-9
  • 13. Petrossians P, Daly AF, Natchev E, Maione L, Blijdorp K et al. Acromegaly at diagnosis in 3173 patients from the Liege Acromegaly Survey (LAS) Database. Endocrine-Related Cancer 2017; 24 (10): 505-518. doi:10.1530/ERC-17-0253
  • 14. Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. Journal of the American Society of Echocardiography 1989; 2 (5): 358-367. doi:10.1016/s0894-7317(89)80014-8
  • 15. De Simone G, Daniels SR, Devereux RB, Meyer RA, Roman MJ et al. Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. Journal of the American College of Cardiology 1992; 20 (5): 1251-1260. doi:10.1016/0735-1097(92)90385-z
  • 16. Das MK, Khan B, Jacob S, Kumar A, Mahenthiran J. Significance of a fragmented QRS complex versus a Q wave in patients with coronary artery disease. Circulation 2006; 113 (21): 2495-2501. doi: 10.1161/CIRCULATIONAHA.105.595892
  • 17. Das MK, Saha C, El Masry H, Peng J, Dandamudi G et al. Fragmented QRS on a 12-lead ECG: a predictor of mortality and cardiac events in patients with coronary artery disease. Heart Rhythm 2007; 4 (11): 1385-1392. doi: 10.1016/j. hrthm.2007.06.024
  • 18. Korkmaz A, Yildiz A, Demir M, Ozyazgan B, Sahan E et al. The relationship between fragmented QRS and functional significance of coronary lesions. Journal of Electrocardiology 2017; 50 (3): 282-286. doi: 10.1016/j.jelectrocard.2017.01.005
  • 19. Dural M, Sunman H, Algul E, Hocamguliyev H, Sahan HF et al. Relationship between serum bilirubin levels and presence of fragmented QRS in patients with acute coronary syndrome. Biomarkers in Medicine 2020; 14 (1): 65-73. doi:10.2217/bmm2018-0493
  • 20. Luo G, Li Q, Duan J, Peng Y, Zhang Z. The predictive value of fragmented qrs for cardiovascular events in acute myocardial infarction: a systematic review and meta-analysis. Frontiers in Physiology 2020; 11: 1027. doi:10.3389/fphys.2020.01027
  • 21. Dereli S, Ozer H, Ozer N, Bayramoglu A, Kaya A. Association between fragmented QRS and left ventricular dysfunction in acromegaly patients. Acta Cardiologica 2019; 1-7. doi:10.1080/ 00015385.2019.1610835
  • 22. Katznelson L, Atkinson JL, Cook DM, Ezzat SZ, Hamrahian AH et al. American Association of Clinical Endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of acromegaly--2011 update. Endocrine Practice 2011; 17 Suppl 4: 1-44. doi: 10.4158/ep.17.s4.1
  • 23. Melmed S, Bronstein MD, Chanson P, Klibanski A, Casanueva FF et al. A consensus statement on acromegaly therapeutic outcomes. Nature Reviews Endocrinology 2018; 14 (9): 552- 561. doi: 10.1038/s41574-018-0058-5
  • 24. Picard MH, Adams D, Bierig SM, Dent JM, Douglas PS et al. American Society of Echocardiography recommendations for quality echocardiography laboratory operations. Journal of the American Society of Echocardiography 2011; 24 (1): 1-10. doi: 10.1016/j.echo.2010.11.006
  • 25. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. Journal of the American Society of Echocardiography 2005; 18 (12):1440-1463. doi: 10.1016/j. echo.2005.10.005
  • 26. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. American Journal of Cardiology 1986; 57 (6): 450-458. doi:10.1016/0002- 9149(86)90771-x
  • 27. Dohy Z, Vereckei A, Horvath V, Czimbalmos C, Szabo L et al. How are ECG parameters related to cardiac magnetic resonance images? Electrocardiographic predictors of left ventricular hypertrophy and myocardial fibrosis in hypertrophic cardiomyopathy. Annals of Noninvasive Electrocardiology 2020; 25 (5): e12763. doi:10.1111/anec.12763
  • 28. Fischer K, Marggraf M, Stark AW, Kaneko K, Aghayev A et al. Association of ECG parameters with late gadolinium enhancement and outcome in patients with clinical suspicion of acute or subacute myocarditis referred for CMR imaging. PLoS One 2020; 15 (1): e0227134. doi: 10.1371/journal. pone.0227134
  • 29. Lorgis L, Cochet A, Chevallier O, Angue M, Gudjoncik A et al. Relationship between fragmented QRS and no-reflow, infarct size, and peri-infarct zone assessed using cardiac magnetic resonance in patients with myocardial infarction. Canadian Journal of Cardiology 2014; 30 (2): 204-210. doi: 10.1016/j. cjca.2013.11.026
  • 30. Basaran Y, Tigen K, Karaahmet T, Isiklar I, Cevik C et al. Fragmented QRS complexes are associated with cardiac fibrosis and significant intraventricular systolic dyssynchrony in nonischemic dilated cardiomyopathy patients with a narrow QRS interval. Echocardiography 2011; 28 (1): 62-68. doi:10.1111/j.1540-8175.2010.01242.x
  • 31. Lie JT. Pathology of the heart in acromegaly: anatomic findings in 27 autopsied patients. American Heart Journal 1980; 100 (1): 41-52. doi:10.1016/0002-8703(80)90277-x
  • 32. Fazio S, Cittadini A, Sabatini D, Merola B, Colao AM et al. Evidence for biventricular involvement in acromegaly: a Doppler echocardiographic study. European Heart Journal 1993; 14 (1): 26-33. doi:10.1093/eurheartj/14.1.26
  • 33. Colao A, Grasso LFS, Di Somma C, Pivonello R. Acromegaly and heart failure. Heart Failure Clinics 2019; 15 (3): 399-408. doi:10.1016/j.hfc.2019.03.001
  • 34. Sacca L, Napoli R, Cittadini A. Growth hormone, acromegaly, and heart failure: an intricate triangulation. Clinical Endocrinology 2003; 59 (6): 660-671. doi:10.1046/j.1365- 2265.2003.01780.x
  • 35. Hoang K, Zhao Y, Gardin JM, Carnethon M, Mukamal K et al. LV mass as a predictor of CVD events in older adults with and without metabolic syndrome and diabetes. Journal of the American College of Cardiology Cardiovascular Imaging 2015; 8 (9): 1007-1015. doi:10.1016/j.jcmg.2015.04.019
  • 36. Armstrong AC, Gidding S, Gjesdal O, Wu C, Bluemke DA et al. LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. Journal of the American College of Cardiology Cardiovascular Imaging 2012; 5 (8): 837-848. doi:10.1016/j.jcmg.2012.06.003
  • 37. Walpot J, Massalha S, Hossain A, Small GR, Crean AM et al. Left ventricular mass is independently related to coronary artery atherosclerotic burden: feasibility of cardiac computed tomography to detect early geometric left ventricular changes. Journal of Thoracic Imaging 2020. doi: 10.1097/ RTI.0000000000000511
  • 38. Vianna CB, Vieira ML, Mady C, Liberman B, Durazzo AE et al. Treatment of acromegaly improves myocardial abnormalities. American Heart Journal 2002; 143 (5): 873-876. doi:10.1067/ mhj.2002.122167
  • 39. Tsang TS, Abhayaratna WP, Barnes ME, Miyasaka Y, Gersh BJ et al. Prediction of cardiovascular outcomes with left atrial size: is volume superior to area or diameter? Journal of the American College of Cardiology 2006; 47 (5): 1018-1023. doi: 10.1016/j.jacc.2005.08.077
  • 40. Zhu N, Chen H, Zhao X, Ye F, Jiang W et al. Left atrial diameter in heart failure with left ventricular preserved, mid-range, and reduced ejection fraction. Medicine (Baltimore) 2019; 98 (48): e18146. doi:10.1097/MD.0000000000018146
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Clinicopathologic comparisons of IgA nephropathy and IgA vasculitis nephropathy in children: a ten-year single-center experience

QingXiao SU, YuHeng LIANG, Na WANG, ZhiYan DOU, Xue ZHAO, Bo YU, YuXue WANG, XinLiang WANG

Interleukin-21: a potential biomarker for diagnosis and predicting prognosis in COVID-19 patients

Aslı GÖREK DİLEKTAŞLI, Ezgi DEMİRDÖĞEN, Mehmet KARADAĞ, Ayşe Esra UZASLAN, Ahmet URSAVAŞ, Dane EDİGER, Haluk Barbaros ORAL, Nilüfer Aylin ACET ÖZTÜRK, Necmiye Funda COŞKUN, Diğdem YÖYEN ERMİŞ, Mert KARACA, Shahriyar MAHARRAMOV, Gamze YAZICI

Associations between the radiographic phenotypes and the presence of metabolic syndrome in patients with knee osteoarthritis

Berna GÖKER, Mukadder ERDEM, Mehmet Derya DEMİRAĞ, Berna GÜZEL, Düriye Sıla KARAGÖZ ÖZEN, Nizamettin GÜZEL

The protective effect of boric acid on cholestatic rat liver ischemia reperfusion injury

Hamit Yaşar ELLİDAĞ, Tuğrul ÇAKIR, Serkan GÜLER, Arif ASLANER, Şenay YILDIRIM

Quantitative analysis of distal femoral epiphysis blood supply in healthy infants with superb microvascular imaging: a pilot study

Mehmet ÖZTÜRK, Emine ÇALIŞKAN, Hatice ARIÖZ HABİBİ, Muhammed Samed CANSIZ

Allergic bronchopulmonary Aspergillosis in children

Özge ATAY, Suna ASİLSOY, Serdar AL, Gizem ATAKUL, Nevin UZUNER, Özge KANGALLI BOYACIOĞLU, Özkan KARAMAN

Assessment of fragmented QRS formation and its relationship with left ventricular hypertrophy in nonhypertensive acromegaly patients

Kadir Uğur MERT, Göknur YORULMAZ, Selda MURAT, Muhammet DURAL, Elif Sevil ALAGÜNEY, Ahmet Serdar YILMAZ, Nur KEBAPÇI, Ezgi CAMLI, Belgin EFE, Aysen AKALIN, Ahmet Toygar KALKAN

Association of physical frailty with cognitive function and mood in older adults without dementia and depression

Hacer DOĞAN VARAN, Mustafa Kemal KILIÇ, Muhammet Cemal KIZILARSLANOĞLU, Özgür KARA, Mustafa CANKURTARAN, Burcu Balam DOĞU, Rana TUNA DOĞRUL, Güneş ARIK, Meltem HALİL

The role of gold weight implants in the management of paralytic lagophthalmos

Recep KARAMERT, Mehmet DÜZLÜ, Alper CEYLAN, Hakan TUTAR, Süleyman CEBECİ, Muammer Melih ŞAHİN, Eray UZUNOĞLU, Mücahit YALÇIN, Gökçen CESUR, Mehmet Birol UĞUR

1,25-dihydroxyvitamin D3 regulates t helper and b lymphocyte responses substantially in drug-naive primary Sjögren’s syndrome patients’ mononuclear cells

Deniz GENÇ, Emine Figen TARHAN, Merve SEZER KÜRKÇÜ, Burcu GÜNAYDIN