Correlation of serum fatty acid binding protein-4 and interleukin-6 with airflow limitation and quality of life in stable and acute exacerbation of COPD

Background/aim: The serum fatty acid binding protein 4 FABP-4 level increases in chronic inflammatory diseases. The present study aimed to examine serum FABP-4 and interleukin IL -6 levels in patients with stable and acute exacerbation of chronic obstructive pulmonary disease COPD and the correlation of these markers with airflow limitation. Materials and methods: We measured serum FABP-4 and IL-6 levels in 60 COPD patients [30 stable COPD SCOPD , and 30 acute exacerbation of COPD AECOPD ], and 30 healthy subjects and compared them with airflow limitation according to the COPD stage in the Global Initiative for Chronic Obstructive Pulmonary Disease GOLD criteria, peripheral O2 saturation SpO2 , and COPD Assessment Test CAT score. We also tested the association between serum FABP-4 levels and some characteristics of study parameters. Results: Both serum FABP-4 and IL-6 levels increased with increasing severity of GOLD grades in SCOPD P

___

  • 1. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. European Respiratory Journal 2017: 557-582. doi: 10.1164/rccm.201701-0218PP
  • 2. Celli BR, Barnes PJ. Exacerbations of chronic obstructive pulmonary disease. European Respiratory Journal 2007; 29 (6): 1224-1238. doi: 10.1183/09031936.00109906
  • 3. Wouters EF, Groenewegen KH, Dentener MA, Vernooy JH. Systemic inflammation in chronic obstructive pulmonary disease: the role of exacerbations. Proceedings of the American Thoracic Society 2007; 4 (8): 626-634. doi: 10.1513/ pats.200706-071TH
  • 4. Hurst JR, Perera WR, Wilkinson TM, Donaldson GC, Wedzicha JA. Systemic and upper and lower airway inflammation at exacerbation of chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 2006; 173 (1): 71-78. doi: 10.1164/rccm.200505-704OC
  • 5. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nature Reviews Immunology 2011; 11 (2): 85-97. doi: 10.1038/nri2921
  • 6. Fantuzzi G. Adipose tissue, adipokines, and inflammation. Journal of Allergy and Clinical Immunology 2005; 115 (5): 911-919. doi: 10.1016/j.jaci.2005.02.023
  • 7. Aslani MR, Keyhanmanesh R, Khamaneh AM, Ebrahimi Saadatlou MA, Mesgari Abbasi M et al. Lung altered expression of IL-1beta mRNA and its signaling pathway molecules in obese-asthmatic male Wistar rats. Iranian Journal of Allergy, Asthma, and Immunology 2016; 15 (3): 183-197.
  • 8. Aslani MR, Keyhanmanesh R, Khamaneh AM, Abbasi MM, Fallahi M et al. Tracheal overexpression of IL-1beta, IRAK1 and TRAF-6 mRNA in obese-asthmatic male Wistar rats. Iranian Journal of Basic Medical Sciences 2016; 19 (4): 350-357.
  • 9. Bianco A, Nigro E, Monaco ML, Matera MG, Scudiero O et al. The burden of obesity in asthma and COPD: role of adiponectin. Pulmonary Pharmacology and Therapeutics 2017; 43: 20-25. doi: 10.1016/j.pupt.2017.01.004
  • 10. Thumser AE, Moore JB, Plant NJ. Fatty acid binding proteins: tissue-specific functions in health and disease. Current Opinion in Clinical Nutrition and Metabolic Care 2014; 17 (2): 124-129. doi: 10.1097/mco.0000000000000031
  • 11. Hertzel AV, Xu H, Downey M, Kvalheim N, Bernlohr DA. Fatty acid binding protein 4/aP2-dependent BLT1R expression and signaling. Journal of Lipid Research 2017; 58 (7): 1354-1361. doi: 10.1194/jlr.M074542
  • 12. Hertzel AV, Bernlohr DA. The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends in Endocrinology and Metabolism 2000; 11 (5): 175-180. doi: 10.1016/S1043-2760(00)00257-5
  • 13. Zhang X, Li D, Wang H, Pang C, Wu Y et al. Gender difference in plasma fatty-acid-binding protein 4 levels in patients with chronic obstructive pulmonary disease. Bioscience Reports 2016; 36 (1): e00302. doi: 10.1042/bsr20150281
  • 14. Andres Cerezo L, Kuklova M, Hulejova H, Vernerova Z, Pesakova V et al. The level of fatty acid-binding protein 4, a novel adipokine, is increased in rheumatoid arthritis and correlates with serum cholesterol levels. Cytokine 2013; 64 (1): 441-447. doi: 10.1016/j.cyto.2013.05.001
  • 15. Shum BO, Mackay CR, Gorgun CZ, Frost MJ, Kumar RK et al. The adipocyte fatty acid-binding protein aP2 is required in allergic airway inflammation. Journal of Clinical Investigation 2006; 116 (8): 2183-2192. doi: 10.1172/jci24767
  • 16. Furuhashi M, Saitoh S, Shimamoto K, Miura T. Fatty acidbinding protein 4 [FABP4]: pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clinical Medicine Insights: Cardiology 2014; 2 (8): 23-33. doi: 10.4137/CMC.S17067
  • 17. Wedzicha JA, Miravitlles M, Hurst JR, Calverley PM, Albert RK et al. Management of COPD exacerbations: A European respiratory society/American thoracic society guideline. European Respiratory Journal 2017; 49 (3): 1600791. doi: 10.1183/13993003.00791-2016
  • 18. Amani M, Ghadimi N, Aslani MR, Ghobadi H. Correlation of serum vascular adhesion protein-1 with airflow limitation and quality of life in stable chronic obstructive pulmonary disease. Respiratory Medicine 2017; 132: 149-153. doi: 10.1016/j. rmed.2017.10.011
  • 19. Ghobadi H, Aslani MR, Hosseinian A, Farzaneh E. The correlation of serum brain natriuretic peptide and interleukin-6 with quality of life using the chronic obstructive pulmonary disease assessment test. Medical Principles and Practice 2017; 26 (6): 509-515. doi: 10.1159/000484900
  • 20. Liang R, Zhang W, Song Y-M. Levels of leptin and IL-6 in lungs and blood are associated with the severity of chronic obstructive pulmonary disease in patients and rat models. Molecular Medicine Reports 2013; 7 (5): 1470-1476. doi: 10.3892/mmr.2013.1377
  • 21. Aslani MR, Keyhanmanesh R, Alipour MR. Increased visfatin expression is associated with nuclear factor-κB in obese ovalbumin-sensitized male Wistar rat tracheae. Medical Principles and Practice 2017; 26 (4): 351-358. doi: 10.1159/000475772
  • 22. Keyhanmanesh R, Alipour MR, Ebrahimi H, Aslani MR. Effects of diet-induced obesity on tracheal responsiveness to methacholine, tracheal visfatin level, and lung histological changes in ovalbumin-sensitized female Wistar rats. Inflammation 2018; 41 (3): 846-858. doi: 10.1007/s10753-018- 0738-2
  • 23. Ghelfi E, Yu C-W, Elmasri H, Terwelp M, Lee CG et al. Fatty acid binding protein 4 regulates VEGF-induced airway angiogenesis and inflammation in a transgenic mouse model: implications for asthma. The American journal of pathology 2013; 182 (4): 1425-1433. doi: 10.1016/j.ajpath.2012.12.009
  • 24. Hu B, Li Y, Gao L, Guo Y, Zhang Y et al. Hepatic induction of fatty acid binding protein 4 plays a pathogenic role in sepsis in mice. The American Journal of Pathology 2017; 187 (5): 1059- 1067. doi: 10.1016/j.ajpath.2017.01.002
  • 25. Makowski L, Brittingham KC, Reynolds JM, Suttles J, Hotamisligil GS. The fatty acid-binding protein, aP2, coordinates macrophage cholesterol trafficking and inflammatory activity macrophage expression of aP2 impacts peroxisome proliferator-activated receptor γ and IκB kinase activities. Journal of Biological Chemistry 2005; 280 (13): 12888-12895. doi: 10.1074/jbc.M413788200
  • 26. Hoo RL, Lee IP, Zhou M, Wong JY, Hui X et al. Pharmacological inhibition of adipocyte fatty acid binding protein alleviates both acute liver injury and non-alcoholic steatohepatitis in mice. Journal of Hepatology 2013; 58 (2): 358-364. doi: 10.1016/j.jhep.2012.10.022
  • 27. Steen KA, Xu H, Bernlohr DA. FABP4/aP2 regulates macrophage redox signaling and inflammasome activation via control of UCP2. Molecular and Cellular Biology 2017; 37 (2): e00282-00216. doi: 10.1128/MCB.00282-16
  • 28. Gong Y, Yu Z, Gao Y, Deng L, Wang M et al. FABP4 inhibitors suppress inflammation and oxidative stress in murine and cell models of acute lung injury. Biochemical and Biophysical Research Communications 2018; 496 (4): 1115-1121. doi: 10.1016/j.bbrc.2018.01.150
  • 29. Deng T, Wang Y, Wang C, Yan H. FABP4 silencing ameliorates hypoxia reoxygenation injury through the attenuation of endoplasmic reticulum stress-mediated apoptosis by activating PI3K/Akt pathway. Life Sciences 2019; 1 (224): 149-156. doi: 10.1016/j.lfs.2019.03.046
  • 30. Watz H, Waschki B, Meyer T, Magnussen H. Physical activity in patients with COPD. European Respiratory Journal 2009; 33 (2): 262-272. doi: 10.1183/09031936.00024608
  • 31. Watz H, Waschki B, Kirsten A, Muller KC, Kretschmar G et al. The metabolic syndrome in patients with chronic bronchitis and COPD: frequency and associated consequences for systemic inflammation and physical inactivity. Chest 2009; 136 (4): 1039-1046. doi: 10.1378/chest.09-0393