The Lebesgue constants on projective spaces

The Lebesgue constants on projective spaces

We give the solution of a classical problem of Approximation Theory on sharp asymptotic of the Lebesgueconstants or norms of the Fourier-Laplace projections on the real projective spaces Pd(R). In particular, these resultsextend sharp asymptotic found by Fejer [2] in the case of S1in 1910 and by Gronwall [4] in 1914 in the case of S2. Thecase of spheres, Sd, complex and quaternionic projective spaces, Pd(C), Pd(H) and the Cayley elliptic plane P16(Cay)was considered by Kushpel [8].

___

  • [1] Cartan E. Sur la determination d’un systeme orthogonal complet dans un espace de Riemann symetrique clos. Rendiconti del Circolo Matematico di Palermo 1929; 53: 217-252 (in French).
  • [2] Fejer L. Lebesguesche Konstanten und divergente Fourierreihen. Journal für die reine und angewandte Mathematik 1910; 138: 22-53 (in German).
  • [3] Gangolli R. Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Browian motion of several parameters. Annales de l’Institut Henri Poincaré 1967; 3: 121-225.
  • [4] Gronwall TH. On the degree of convergence of Laplace series, Transactions of the American Mathematical Society 1914; 15: 1-30.
  • [5] Helgason S. The Radon Transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds. Acta Matematica 1965; 113: 153-180.
  • [6] Helgason S. Differential Geometry and Symmetric Spaces. New York, NY, USA: Academic Press, 1962.
  • [7] Koornwinder T. The addition formula for Jacobi polynomials and spherical harmonics. SIAM Journal of Applied Mathematics 1973; 25: 236-246.
  • [8] Kushpel A. On the Lebesgue constants. Ukrainian Mathematical Journal 2019; 71: 1073-1081.
  • [9] Szegö G. Orthogonal Polynomials. New York, NY, USA: American Mathematical Society, 1939.