New oscillation criteria for differential equations with sublinear and superlinear neutral terms

New oscillation criteria for differential equations with sublinear and superlinear neutral terms

The aim of this article is to establish some new oscillation criteria for the differential equation of even-orderof the form(r (l) (y(n−1) (l))α)′ + f(l, x(τ (l))) = 0,where y (l) = x (l) + p (l) xβ(σ1 (l)) + h (l) xδ(σ2 (l)). By using Riccati transformations, we present new conditions foroscillation of the studied equation. Furthermore, two illustrative examples showing applicability of the new results areincluded.

___

  • [1] Agarwal RP, Bohner M, Li T, Zhang C. A new approach in the study of oscillatory behavior of evenorder neutral delay differential equations. Applied Mathematics and Computation 2013; 225: 787-794. doi: 10.1016/j.amc.2013.09.037
  • [2] Bazighifan O, Grace SR, Alzabut J, Ozbekler A. New results for oscillatory properties of neutral differential equationswith a p-Laplacian like operator. Miskolc Mathematical Notes Vol. 21 2020; 2: 631-640. doi: 10.18514/MMN.2020.3322
  • [3] Bohner M, Grace SR, Jadlovska I. Oscillation criteria for second-order neutral delay differential equations. Electronic Journal of Qualitative Theory of Differential Equations 2017; 60: 1-12. doi: 10.14232/ejqtde.2017.1.60
  • [4] Graef J, Grace S, Tunc E. Oscillation criteria for even-order differential equations with unbounded neutral coefficients and distributed deviating arguments. Functional Differential Equations 2018; 45, 143-153.
  • [5] Graef J, Grace S, Tunc E. Oscillatory behavior of even-order nonlinear differential equations with a sublinear neutral term. Opuscula Mathematica 2019; 39 (1): 39-47. doi: 10.7494/OpMath.2019.39.1.39
  • [6] Hale JK. Functional differential equations. In: Hsieh PF, Stoddart AWJ (editors). Analytic Theory of Differential Equations. Lecture Notes in Mathematics, Vol 183. Berlin, Germany: Springer-Verlag, 1971.
  • [7] Hardy GH, Littlewood IE, Polya G. Inequalities. Reprint of the 1952 edition. Cambridge, UK: Cambridge University Press, 1988.
  • [8] Li T, Rogovchenko YV. Asymptotic behavior of higher-order quasilinear neutral differential equations. Hindawi Publishing Corporation. Abstract and Applied Analysis 2014; 2014: 1-11. doi: 10.1155/2014/395368
  • [9] Li T, Rogovchenko YV. Oscillation criteria for even-order neutral differential equations. Applied Mathematics Letters 2016; 61: 35-41. doi: 10.1016/j.aml.2016.04.012
  • [10] Moaaz O, Awrejcewicz J, Muhib A. Establishing new criteria for oscillation of odd-order nonlinear differential equations. Mathematics 2020; 8 (6): 1-15. doi: 10.3390/math8060937
  • [11] Moaaz O, Baleanu D, Muhib A. New aspects for non-existence of kneser solutions of neutral differential equations with odd-order. Mathematics 2020; 8 (4): 1-11. doi: 10.3390/math8040494
  • [12] Moaaz O, Cesarano C, Muhib A. Some new oscillation results for fourth-order neutral differential equations. European Journal of Pure and Applied Mathematics 2020; 13 (2): 185-199.
  • [13] Moaaz O, Dassios I, Muhsin W, Muhib A. Oscillation theory for non-linear neutral delay differential equations of third order. Applied Sciences 2020; 10 (14): 1-16. doi: 10.3390/app10144855
  • [14] Moaaz O, El-Nabulsi RA, Bazighifan O, Muhib A. New comparison theorems for the even-order neutral delay differential equation. Symmetry 2020; 12 (5): 1-11. doi: 10.3390/sym12050764
  • [15] Moaaz O, Park Ch, Muhib A, Bazighifan O. Oscillation criteria for a class of even-order neutral delay differential equations. Journal of Applied Mathematics and Computing 2020; 63: 607-617. doi: 10.1007/s12190-020-01331-w
  • [16] Muhib A, Abdeljawad T, Moaaz O, Elabbasy EM. Oscillatory properties of odd-order delay differential equations with distribution deviating arguments. Applied Sciences 2020; 10 (17): 1-10. doi: 10.3390/app10175952
  • [17] Philos CG. A new criterion for the oscillatory and asymptotic behavior of delay differential equations. Bulletin de L’academie Polonaise Des Sciences Série des sciences mathématiques 1981; 39 61-64.
  • [18] Vidhyaa KS, Graef JR, Thandapani E. New oscillation results for third-order half-linear neutral differential equations. Mathematics 2020; 8 (3): 1-9. doi: 10.3390/math8030325
  • [19] Xing G, Li T, Zhang C. Oscillation of higher-order quasi-linear neutral differential equations. Advances in Difference Equations 2011; (45): 1-10.
  • [20] Zhang C, Agarwal RP, Bohner M, Li T. New results for oscillatory behavior of even-order half-linear delay differential equations. Applied Mathematics Letters 2013; 26: 179-183. doi: 10.1016/j.aml.2012.08.004