Notes on multivalent Bazilević functions defined by higher order derivatives
Notes on multivalent Bazilević functions defined by higher order derivatives
In this paper we consider two subclasses B(p, q, α, β) and B1(p, q, α, β) of p-valently Bazilević functionsdefined by higher order derivatives, and we defined and studied some properties of the images of the functions of theseclasses by the integral operators In,p and Jn,p for multivalent functions, defined by using higher order derivatives.
___
- [1] Aouf MK. On a class of p-valent starlike functions of order α. Panamerican Mathematical Journal 1987; 10 (4): 733-744.
- [2] Aouf MK. A generalization of multivalent functions with negative coefficients.Journal of the Korean Mathematical Society 1988; 25 (1): 53-66.
- [3] Aouf MK. On a class of p-valent close-to-convex functions of order α and type β .International Journal of Mathematical Sciences 1988; 11 (2): 259-266.
- [4] Aouf MK. Certain subclasses of p-valent starlike functions defined by using a differential operator. Applied Mathematics and Computation 2008; 206 (2): 867-875.
- [5] Aouf MK. Some families of p-valent functions with negative coefficients. Acta Mathematica Universitatis Comenianae 2009: 78 (1): 121-135.
- [6] Aouf MK. On certain subclass of p-valently Bazilević functions. Studia Universitatis Babeş-Bolyai Mathematica 2009; 54 (1): 21-28.
- [7] Aouf MK. On certain multivalent functions with negative coefficients defined by using a differential operator. Matematički Vesnik 2010; 62 (1): 23-35.
- [8] Aouf MK. Bounded p-valent Robertson functions defined by using a differential operator. Journal of The Franklin Institute 2010; 347 (10): 1927-1941.
- [9] Aouf MK. Some inclusion relationships associated with Dziok-Srivastava operator. Applied Mathematics and Computation 2010; 216 (2): 431-437.
- [10] Aouf MK, Hossen HM, Srivastava HM. Some families of multivalent functions. Applied Mathematics and Computation 2000; 39 (7-8): 39-48.
- [11] Halim SA, Thomas DK. A note on Bazilević functions. Panamerican Mathematical Journal 1991; 14 (4): 821-823.
- [12] Hallenbeck DJ. Convex hulls and extreme points of some families of univalent functions. Transactions of the American Mathematical Society 1974; 192: 285-292.
- [13] Goswami P, Bansal S. On sufficient conditions and angular properties of starlikeness and convexity for the class of mulivalent Bazilević functions. International Journal of Open Problems in Computer Science and Mathematics 2009; 2 (1): 98-107.
- [14] Irmak H, Piejko K, Stankiewicz J. A note involving p-valently Bazilević functions. International Journal of Mathematical Sciences 2005; 7: 1149-1153.
- [15] Ling Yi, Gejun B, Shengzbeng L. Some properties of certain analytic functions. Nihonkai Mathematical Journal 1992; 3 (1): 31-37.
- [16] MacGregor TH. Functions whose derivative has a positive real part. Transactions of the American Mathematical Society 1962; 104 (3): 532-537.
- [17] Owa S. On certain classes of p-valent functions with negative coefficients. Bulletin of the Belgian Mathematical Society Simon Stevin 1985; 59: 385-402.
- [18] Owa S. Certain integral operator. Proceedings of the Japan Academy, Series A, Mathematical Sciences 1991; 67 (3): 88-93.
- [19] Owa S. Notes on certain p-valent functions. Panamerican Mathematical Journal 1993; 3 (3): 79-93.
- [20] Owa S, Obradović M. Certain subclasses of Bazilević functions of type α. International Journal of Mathematical Sciences 1986; 9 (2): 347-359.
- [21] Patel J, Rout S. An application of differential subordinations. Rendiconti di Matematica, Serie VII 1994; 14: 367- 384.
- [22] Ponnusamy S, Karunakaran V. Differential subordination and conformal mappings. Complex Variables, Theory and Application: An International Journal 1989; 11 (2): 79-86.
- [23] Saitoh H. Properties of certain analytic functions. Proceedings of the Japan Academy, Series A, Mathematical Sciences 1989; 65 (5): 131-134.
- [24] Saitoh H. On certain multivalent functions. Proceedings of the Japan Academy, Series A, Mathematical Sciences 1991; 67 (8): 287-292.
- [25] Thomas DK. A note on Bazilević functions. Research Institute for Mathematical Sciences Kyoto University 1990; 714: 18-21.