Symmetric polynomials in Leibniz algebras and their inner automorphisms

Symmetric polynomials in Leibniz algebras and their inner automorphisms

Let Ln be the free metabelian Leibniz algebra generated by the set Xn = {x1, . . . , xn} over a field K of characteristic zero. This is the free algebra of rank n in the variety of solvable of class 2 Leibniz algebras. We call an element s(Xn) ∈ Ln symmetric if s(xσ(1), . . . , xσ(n)) = s(x1, . . . , xn) for each permutation σ of {1, . . . , n}. The set L Sn n of symmetric polynomials of Ln is the algebra of invariants of the symmetric group Sn . Let K[Xn] be the usual polynomial algebra with indeterminates from Xn . The description of the algebra K[Xn] Sn is well known, and the algebra (L ′ n) Sn in the commutator ideal L ′ n is a right K[Xn] Sn -module. We give explicit forms of elements of the K[Xn] Sn -module (L ′ n) Sn . Additionally, we determine the description of the group Inn(L Sn n ) of inner automorphisms of the algebra L Sn n . The findings can be considered as a generalization of the recent results obtained for the free metabelian Lie algebra of rank n.

___

  • [1] Taş Adıyaman T, Özkurt Z. Automorphisms of free metabelian Leibniz algebras of rank three. Turkish Journal of Mathematics 2019; 43 (5): 2262-2274.
  • [2] Bergeron N, Reutenauer C, Rosas M, Zabrocki M. Invariants and coinvariants of the symmetric groups in noncommuting variables. Canadian Journal of Mathematics 2008; 60 (2): 266-296.
  • [3] Bryant RM. On the fixed points of a finite group acting on a free Lie algebra. Journal of the London Mathematical Society 1991; s2-43 (2): 215-224.
  • [4] Drensky V. Fixed algebras of residually nilpotent Lie algebras. Proceedings of the American Mathematical Society 1994; 120 (4): 1021-1028.
  • [5] Drensky V, Fındık Ş, Öǧüşlü NŞ. Symmetric polynomials in the free metabelian Lie algebras. Mediterranean Journal of Mathematics 2020; 17 (5): 1-11.
  • [6] Drensky V, Cattanneo GMP. Varieties of metabelian Leibniz algebras. Journal of Algebra and its Applications 2002; 1 (1): 31-50.
  • [7] Fındık Ş, Öǧüşlü NŞ. Palindromes in the free metabelian Lie algebras. International Journal of Algebra and Computation 2019; 29 (5): 885-891.
  • [8] Fındık Ş, Öǧüşlü NŞ. Inner automorphisms of Lie algebras of symmetric polynomials. arXiv 2019; arXiv:2003.06818.
  • [9] Gelfand IM, Krob D, Lascoux A, Leclerc B, Retakh VS et al. Noncommutative symmetric functions. Advances in Mathematics 1995; 112 (2): 218-348.
  • [10] Hilbert D. Mathematische Probleme. Göttinger Nachrichten 1900; 253-297. Translation: Bulletin of the American Mathematical Society 1902; 8 (10): 437-479.
  • [11] Loday JL. Une version non commutative des algebres de Lie: les algebres de Leibniz. L’Enseignement Mathématique 1993; 39: 269-293 (in French).
  • [12] Loday JL, Pirashvili T. Universal enveloping algebras of Leibniz algebras and (co)homology. Mathematische Annalen 1993; 296: 139-158.
  • [13] Mikhalev AA, Umirbaev UU. Subalgebras of free Leibniz algebras. Communications in Algebra 1998; 26: 435-446.
  • [14] Noether E. Der Endlichkeitssatz der Invarianten endlicher Gruppen. Mathematische Annalen 1916; 77: 89-92 (in German).
  • [15] Nagata M. On the 14-th problem of Hilbert. American Journal of Mathematics 1959; 81: 766-772.
  • [16] Özkurt Z. Orbits and test elements in free Leibniz algebras of rank two. Communications in Algebra 2015; 43 (8): 3534-3544.
  • [17] Sturmfels B. Algorithms in Invariant Theory. In: Paule P (editor). Texts and Monographs in Symbolic Computation. 2nd ed. Germany: Springer-Verlag, 2008.
  • [18] Wolf MC. Symmetric functions of non-commutative elements. Duke Mathematical Journal 1936; 2 (4): 626-637.