q−Hamiltonian systems

q−Hamiltonian systems

In this paper, we develop the basic theory of linear q− Hamiltonian systems. In this context, we establish an existence and uniqueness result. Regular spectral problems are studied. Later, we introduce the corresponding maximal and minimal operators for this system. Finally, we give a spectral resolution.

___

  • [1] Abu-Risha MH, Annaby MH, Ismail MEH, Mansour ZS. Linear q−difference equations. Zeitschrift fur Analysis und ihre Anwendungen 2007; 26: 481-494.
  • [2] Ahlbrandt CD, Peterson AC. Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Ricatti Equations. Boston, MA, USA: Kluwer Academic Publishers Group, 1996.
  • [3] Allahverdiev BP, Tuna H. An expansion theorem for q−Sturm-Liouville operators on the whole line. Turkish Journal of Mathematics 2018; 42: 1060-1071.
  • [4] Allahverdiev BP, Tuna H. Limit-point criteria for q−Sturm-Liouville equations. Quaestiones Mathematicae 2019; 42 (10): 1291-1299.
  • [5] Allahverdiev BP, Tuna H. One-dimensional q−Dirac equation. Mathematical Methods in the Applied Sciences 2017; 40: 7287-7306.
  • [6] Allahverdiev BP, Tuna H. Dissipative q−Dirac operator with general boundary conditions. Quaestiones Mathematicae 2018; 41 (2): 239-255.
  • [7] Allahverdiev BP, Tuna H. On expansion in eigenfunction for q−Dirac systems on the whole line. Mathematical Reports 2019; 21 (3): 369-382.
  • [8] Allahverdiev BP, Tuna H. Titchmarsh-Weyl theory for q−Dirac systems. Infinite Dimensional Analysis, Quantum Probability and Related Topics 2019; 22 (2): 1950010.
  • [9] Allahverdiev BP, Tuna H. Properties of the resolvent of singular q−Dirac operators. Electronic Journal of Differential Equations 2020; 2020 (3): 1-13.
  • [10] Allahverdiev BP, Tuna H. Qualitative spectral analysis of singular q−Sturm-Liouville operators. Bulletin of the Malaysian Mathematical Sciences Society 2020; 43: 1391.
  • [11] Allahverdiev BP, Tuna H. Eigenfunction expansion in the singular case for q−Sturm-Liouville operators. Caspian Journal of Mathematical Sciences 2019; 8 (2): 91-102.
  • [12] Anderson DR. Titchmarsh–Sims–Weyl theory for complex Hamiltonian systems on Sturmian time scales. Journal of Mathematical Analysis and Applications 2011; 373: 709-725.
  • [13] Annaby MH, Mansour ZS. Basic Sturm–Liouville problems. Journal of Physics A: Mathematical and Theoretical 2005; 38: 3775-3797.
  • [14] Annaby MH, Hassan HA, Mansour ZS. Sampling theorems associated with singular q−Sturm Liouville problems. Results in Mathematics 2012; 62: 121-136.
  • [15] Annaby MH, Mansour ZS. q−Fractional Calculus and Equations. In: Lecture Notes in Mathematics, Vol. 2056. Heidelberg, Germany: Springer-Verlag, 2012.
  • [16] Atkinson FV. Discrete and Continuous Boundary Problems. New York, NY, USA: Academic Press Inc., 1964.
  • [17] Bangerezako G. q−Difference linear control systems. Journal of Difference Equations and Applications 2011; 17 (9): 1229-1249.
  • [18] Ernst T. The History of q−Calculus and a New Method. U. U. D. M. Report 2000, Vol. 16. Uppsala, Sweden: Uppsala University, 2000.
  • [19] Eryılmaz A, Tuna H. Spectral theory of dissipative q−Sturm-Liouville problems. Studia Scientiarum Mathematicarum Hungarica 2014; 51 (3): 366-383.
  • [20] Hamza AE, Sarhan AM, Shehata EM, Aldwoah KA. A general quantum difference calculus. Advances in Difference Equations 2015; 2015 (182): 1-19.
  • [21] Kac V, Cheung P. Quantum Calculus. Berlin, Germany: Springer-Verlag, 2002.
  • [22] Krall AM. Hilbert Space, Boundary Value Problems and Orthogonal Polynomials. Basel, Switzerland: Birkhäuser Verlag, 2002.
  • [23] Shi YM. Spectral theory of discrete linear Hamiltonian systems. Journal of Mathematical Analysis and Applications 2004; 289 (2): 554-570.
  • [24] Shi Y. Weyl–Titchmarsh theory for a class of discrete linear Hamiltonian systems. Linear Algebra and its Applications 2006; 416: 452-519.
  • [25] Tuna H, Eryılmaz A. Completeness of the system of root functions of q−Sturm-Liouville operators. Mathematical Communications 2014; 19 (1): 65-73.
  • [26] Tuna H, Eryılmaz A. On q−Sturm-Liouville operators with eigenvalue parameter contained in the boundary conditions. Dynamic Systems and Applications 2015; 24 (4): 491-501.
  • [27] Tuna H, Eryılmaz A. Livšic’s theorem for q−Sturm-Liouville operators. Studia Scientiarum Mathematicarum Hungarica 2016; 53 (4): 512-524.
  • [28] Zettl A. Sturm–Liouville Theory. In: Mathematical Surveys and Monographs, Vol. 121. Providence, RI, USA: American Mathematical Society, 2005.