Solvability of Gripenberg’s equations of fractional order with perturbation term in weighted $L_p$ -spaces on $R^+$

Solvability of Gripenberg’s equations of fractional order with perturbation term in weighted $L_p$ -spaces on $R^+$

This article deals with the solvability of Gripenberg’s equations of fractional order with a perturbation term in weighted Lebesgue spaces on$R^+$ = [0, ∞) via the fixed point hypothesis and the measure of noncompactness. The uniqueness of the solutions for the studied problem is discussed. An example is included to validate our results. The results presented in the article extend and generalize some former results in the available literature.

___

  • [1] Abdeldaim A. On some new Gronwall-Bellman-Ou-Iang type integral inequalities to study certain epidemic models. Journal of Integral Equations and Applications 2012; 24 (2): 149-166.
  • [2] Aghajani A, O’Regan D, Shole Haghighi A. Measure of noncompactness on $L_p(R^N )$ and applications. Cubo. A Mathematical Journal 2015; 17 (1): 85-97.
  • [3] Awad H, Darwish M, Metwali M. On a cubic integral equation of Urysohn type with linear perturbation of second kind. Journal of Mathematics and Applications 2018; 41: 29-38.
  • [4] Appell J, Zabrejko PP. Nonlinear Superposition Operators. Cambridge: Cambridge Tracts in Mathematics; 95, Cambridge University Press, 1990.
  • [5] Banaś J, Chlebowicz A. On solutions of an infinite system of nonlinear integral equations on the real half-axis. Banach Journal of Mathematical Analysis 2019; 13 (4): 944-968.
  • [6] Banaś J, Goebel K. Measures of Noncompactness in Banach Spaces. New York - Basel: Lecture Notes in Mathematics 60, M. Dekker, 1980.
  • [7] Banaś J, Knap Z. Measures of weak noncompactness and nonlinear integral equations of convolution type. Journal of Mathematical Analysis and Applications 1990; 146 (2): 353-362.
  • [8] Bellour A, Bousselsal M, Taoudi MA. Integrable solutions of a nonlinear integral equation related to some epidemic models. Glasnik Matematicki 2014; 49 (2): 395-406.
  • [9] Bohner M, Tunç O. Qualitative analysis of integro-differential equations with variable retardation. Discrete and Continuous Dynamical Systems-B, 2021; doi: 10.3934/dcdsb.2021059
  • [10] Bohner M, Tunç O, Tunç C. Qualitative analysis of Caputo fractional integro-differential equations with constant delays. Computational and Applied Mathematics 2021; 40, 214. doi: 10.1007/s40314-021-01595-3
  • [11] Boulfoul B, Bellour A, Djebali S. Solvability of nonlinear integral equations of product type. Electronic Journal of Differential Equations 2018; 2018 (19): 1-20.
  • [12] Brestovanská E, Medved M. Fixed point theorems of the Banach and Krasnosel’skii type for mappings on mtuple Cartesian product of Banach algebras and systems of generalized Gripenberg’s equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 2012; 51 (2): 27-39.
  • [13] Cichoń M, Metwali M. Existence of monotonic $L_φ$-solutions for quadratic Volterra functional-integral equations. Electronic Journal of Qualitative Theory of Differential Equations 2015; 13: 1-16.
  • [14] Cichoń M, Metwali M. On a fixed point theorem for the product of operators. Journal of Fixed Point Theory and Applications 2016; 18 (4): 753-770.
  • [15] Darwish M, Metwali M, O’Regan D. Unique solvability of fractional quadratic nonlinear integral equations. Differential Equations and Applications 2021; 13 (1): 1-13.
  • [16] Deep A, Deepmala, Tunç C. On the existence of solutions of some non-linear functional integral equations in Banach algebra with applications. Arab Journal of Basic and Applied Sciences 2020; 27 (1): 279-286.
  • [17] Deep A, Deepmala, Roshan JR. Solvability for generalized nonlinear functional integral equations in Banach spaces with applications. Journal of Integral Equations and Applications 2021; 33 (1): 19-30. doi: 10.1216/jie.2021.33.19
  • [18] Deimling K. Nonlinear Functional Analysis. Berlin: Springer-Verlag, 1985.
  • [19] Gorenflo R, Vessela S. Abel Integral Equations. Berlin-Heidelberg: Lecture Notes in Mathematics; 1461, Springer, 1991.
  • [20] Gripenberg G. Periodic solutions of an epidemic model. Journal of Mathematical Biology 1980; 10 (3): 271-280.
  • [21] Gu H, Zhou Y, Ahmad B, Alsaedi A. Integral solutions of fractional evolution equations with nondense domain. Electronic Journal of Differential Equations 2017; 2017 (145): 1-15.
  • [22] Karoui A, Jawahdou A, Ben Aouicha H. Weighted $L_p$ -solutions on unbounded intervals of nonlinear integral equations of the Hammerstein and Urysohn types. Advances in Pure and Applied Mathematics 2010; 2 (1): 1-22.
  • [23] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam: 2006.
  • [24] Kwapisz J. Wighted norms and Volterra integral equations in $L^p$ spaces. Journal of Applied Mathematics and Stochastic Analysis 1991; 4 (2): 161-164.
  • [25] Metwali M. On a class of quadratic Urysohn–Hammerstein integral equations of mixed type and initial value problem of fractional order. Mediterranean Journal of Mathematics 2016; 13 (5): 2691-2707.
  • [26] Metwali M. On some qualitative properties of integrable solutions for Cauchy-type problem of fractional order. Journal of Mathematics and Applications 2017; 40: 121-134.
  • [27] Metwali M. Solvability of functional quadratic integral equations with perturbation. Opuscula Mathematica 2013; 33: 725-739.
  • [28] Metwali M. The solvability of functional quadratic Volterra-Urysohn integral equations on the half line. Fasciculi Mathematici 2018; 61: 109-123.
  • [29] Pachpatte BG. On a new inequality suggested by the study of certain epidemic models. Journal of Mathematical Analysis and Applications 1995; 195 (3): 638-644.
  • [30] Samko SG, Kilbas AA, Marichev OI. Fractional Integrals and Derivative. Theory and Applications. Gordon and Breach Science Publishers, 1993.
  • [31] Scorza Dragoni G. Un teorema sulle funzioni continue rispetto ad une e misarubili rispetto ad un altra variable. Rendiconti del Seminario Matematico della Universitá di Padova 1948; 17: 102-106.
  • [32] Tunç O, Atan Ö, Tunç C, Yao JC. Qualitative analyses of integro-fractional differential equations with Caputo derivatives and retardations via the Lyapunov-Razumikhin method. Axioms 2021; 10(2) 58. doi: 10.3390/axioms10020058
  • [33] Weng S, Wang F. Existence of weak solutions for a boundary value problem of a second order ordinary differential equation. Boundary Value Problems 2018; 9 (2018). doi:10.1186/s13661-018-0929-7.
Turkish Journal of Mathematics-Cover
  • ISSN: 1300-0098
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK