Infinitely many positive solutions for an iterative system of conformable fractional order dynamic boundary value problems on time scales

Infinitely many positive solutions for an iterative system of conformable fractional order dynamic boundary value problems on time scales

In this paper, we establish infinitely many positive solutions for the iterative system of conformable fractional order dynamic equations on time scales T ∆ α [ T ∆ β ( ϑn(t) )] = φ(t)fn (ϑn+1(t)), t ∈ (0, 1)T, 1 < α, β ≤ 2, ϑ1(t) = ϑℓ+1(t), t ∈ (0, 1)T, n = 1, 2, · · · , ℓ, satisfying two-point Riemann–Stieltjes integral boundary conditions ϑn(0) = 0, ϑn(1) = ∫ 1 0 ϑn(τ)✷g(τ), n = 1, 2, · · · , ℓ, (T ∆ β ϑn)(0) = 0, (T ∆ β ϑn)(1) = ∫ 1 0 (T ∆ β ϑn)(τ)✷g(τ), n = 1, 2, · · · , ℓ, where T ∆ ⋆ denotes the conformable fractional derivative of order ⋆ ∈ {α, β} on time scale T, by an application of Krasnoselskii’s fixed point theorem on a Banach space.

___

  • [1] Abdeljawad T. On conformable fractional calculus. Journal of Computational and Applied Mathematics 2015; 279: 57-66.
  • [2] Agarwal RP, Bohner M. Basic calculus on time scales and some of its applications. Results in Mathematics 1993; 35 (1): 3-22.
  • [3] Agarwal RP, Bohner M, O’Regan D, Peterson A. Dynamic equations on time scales: a survey. Journal of Computational and Applied Mathematics 2002; 141 (1-2): 1-26.
  • [4] Agarwal RP, Otero-Espinar V, Perera K, Vivero DR. Basic properties of Sobolev’s spaces on time scales. Advances in Difference Equations 2006; 1: 1-14.
  • [5] Ameen I, Novati P. The solution of fractional order epidemic model by implicit Adams methods. Applied Mathematical Modelling 2017; 47: 78-84.
  • [6] Ates I, Zegeling PA. A homotopy perturbation method for fractional order advection diffusion reaction boundary value problems. Applied Mathematical Modelling 2017; 47: 425-441.
  • [7] Babenko SV, Martynyuk AA. Stability of a dynamic graph on time scales. Nonlinear Dynamics and Systems Theory 2014; 14 (1): 30-43.
  • [8] Baleanu D, Diethelm K, Scalas E, Trujillo JJ. Fractional Calculus: Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos, Vol. 3. 2nd ed. Hackensack, NJ, USA: World Scientific Publishing Co. Pte. Ltd., 2017.
  • [9] Bartosiewicz Z, Pawluszewicz E. Realizations of linear control systems on time scales. Control and Cybernetics 2006; 35 (4): 769-786.
  • [10] Bendouma B, Hammoudi A. Nonlinear functional boundary value problems for conformable fractional dynamic equations on time scales. Mediterranean Journal of Mathematics 2019; 16 (25): 1-20. doi: 10.1007/s00009-019- 1302-5
  • [11] Benkhettou N, Hassani S, Torres DFM. A conformable fractional calculus on arbitrary time scales. Journal of King Saud University–Science 2016; 28 (1): 93-98.
  • [12] Bibi R, Bohner M, Pecaric P, Varosanec S. Minkowski and Beckenbach–Dresher inequalities and functionals on time scales. Journal of Mathematical Inequalities 2013; 3: 299-312.
  • [13] Bohner M, Hatipoglu VF. Dynamic cobweb models with conformable fractional derivatives. Nonlinear Analysis: Hybrid Systems 2019; 32: 157-167.
  • [14] Bohner M, Luo H. Singular second-order multipoint dynamic boundary value problems with mixed derivatives. Advances in Difference Equations 2006; 2006 (1): 1-15.
  • [15] Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications. Boston, MA, USA: Birkhauser Boston, Inc., 2001.
  • [16] Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications. Boston, MA, USA: Birkhauser Boston, Inc., 2003.
  • [17] Caputo M, Carcione JM, Botelho MAB, Modeling extreme event precursors with the fractional diffusion equation. Fractional Calculus and Applied Analysis 2015; 18: 208-222.
  • [18] Das SK, Edalatpanah SA, Mandal T. Application of linear fractional programming problem with fuzzy nature in industry sector. Filomat 2020; 34 (15): 5073-5084. doi: 10.2298/FIL2015073D
  • [19] Gulsen T, Yilmaz E, Goktas S. Conformable fractional Dirac system on time scales. Journal of Inequalities and Applications 2017; 161 (1): 1-10. doi: 10.1186/s13660-017-1434-8
  • [20] Gülşen T, Yılmaz E, Kemaloğlu H. Conformable fractional Sturm–Liouville equation and some existence results on time scales. Turkish Journal of Mathematics 2018; 42: 1348-1360.
  • [21] Guo D, Lakshmikantham V. Nonlinear problems in abstract cones. San Diego, CA, USA: Academic Press, 1988.
  • [22] Hilger S. Analysis on measure chains–a unified approach to continuous and discrete calculus. Results in Mathematics 1990; 18: 18-56.
  • [23] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Amsterdam, Netherlands: Elsevier Science B.V., 2006.
  • [24] Mozyrska D, Pawluszewicz E, Torres DFM. The Riemann-Stieltjes integral on time scales. Australian Journal of Mathematical Analysis and Applications 2010; 7 (1): 1-14.
  • [25] Nwaeze ER. A mean value theorem for the conformable fractional calculus on arbitrary time scales. Progress in Fractional Differentiation and Applications 2016; 2 (4): 287-291.
  • [26] Prasad KR, Khuddush M, Leela D. Existence of solutions for infinite systems of regular fractional Sturm-Liouville problems in the spaces of tempered sequences. Tbilisi Mathematics Journal 2020; 13 (4): 193-209.
  • [27] Prasad KR, Khuddush M, Leela D. Existence of solutions for n-dimensional fractional order hybrid BVPs with integral boundary conditions by an application of n-fixed point theorem. The Journal of Analysis 2021. doi: 10.1007/s41478-020-00291-5
  • [28] Rahman G. Application of topological degree method in qualitative behaviour of fractional differential equations. Filomat 2020; 34 (2): 421-432.
  • [29] Srivastava HM. Diabetes and its resulting complications: mathematical modeling via fractional calculus. Public Health Open Access 2020; 4 (3): 1-5.
  • [30] Srivastava HM, Saad KM, Khader MM. An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus. Chaos, Solitons and Fractals 2020; 140: 1-7.
  • [31] Sheng K, Zhang W, Bai Z. Positive solutions to fractional boundary value problems with p–Laplacian scales. Boundary Value Problems 2018; 2018: 1-15.
  • [32] Tarasov VE, Tarasova VV. Time dependent fractional dynamics with memory in quantum and economic physics. Annals of Physics 2017; 383: 579-599.
  • [33] Wang Y, Zhou J, Li Y. Fractional Sobolev’s spaces on time scales via conformable fractional calculus and their application to a fractional differential equation on time scales. Advances in Mathematical Physics 2016; 2016: 1-21.
  • [34] Yan RA, Sun SR, Han ZL. Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales. Bulletin of the Iranian Mathematical Society 2016; 42: 247-262.
  • [35] Yao Z. Existence and Global exponential stability of an almost periodic solution for a host-macroparasite equation on time scales. Advances in Difference Equations 2015; 41. doi: 10.1186/s13662-015-0383-0
  • [36] Yaslan Y, Liceli O. Three point boundary value problems with delta Riemann-Liouville fractional derivative on time scales. Fractional Differential Calculus 2016; 6: 1-16.
  • [37] Yu Z, Jiang H, Hu C, Yu J. Necessary and sufficient conditions for consensus of fractional order multiagent systems via sampled data control. IEEE Transactions on Cybernetics 2017; 47: 1892-1901.
  • [38] Zheng F. New results for a class of boundary value problems involving impulsive fractional differential equations. Filomat 2020; 34 (3): 707-725.