Repdigits as sums of two generalized Lucas numbers

Repdigits as sums of two generalized Lucas numbers

A generalization of the well–known Lucas sequence is the k -Lucas sequence with some fixed integer k ≥ 2. The first k terms of this sequence are 0, . . . , 0, 2, 1, and each term afterwards is the sum of the preceding k terms. In this paper, we determine all repdigits, which are expressible as sums of two k -Lucas numbers. This work generalizes a prior result of Şiar and Keskin who dealt with the above problem for the particular case of Lucas numbers and a result of Bravo and Luca who searched for repdigits that are k -Lucas numbers.

___

  • [1] Bravo JJ, Gómez CA, Luca F. Powers of two as sums of two k -Fibonacci numbers. Miskolc Mathematical Notes 2016; 17: 85-100.
  • [2] Bravo JJ, Luca F. On a conjecture about repdigits in k -generalized Fibonacci sequences. Publicationes Mathematicae Debrecen 2013; 82 (3-4): 623-639.
  • [3] Bravo JJ, Luca F. Repdigits in k -Lucas sequences, Indian Academy of Sciences. Proceedings Mathematical Sciences 2014; 124 (2): 141-154.
  • [4] Bravo JJ, Luca F. Repdigits as sums of two k -Fibonacci numbers. Monatshefte für Mathematik 2015: 176: 31-51.
  • [5] Bugeaud Y, Maurice M, Siksek S. Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers. Annals of Mathematics 2006; 163 (3): 969-1018.
  • [6] Dujella A, Pethö A. A generalization of a theorem of Baker and Davenport. The Quarterly Journal of Mathematics 1998; 49 (2): 291-306.
  • [7] Faye B, Luca F. Pell and Pell-Lucas numbers with only one distinct digit. Annales Mathematicae et Informaticae 2015; 45: 55-60.
  • [8] Irmak N, Togbé A. On repdigits as product of consecutive Lucas numbers. Notes on Number Theory and Discrete Mathematics 2018; 24 (3): 95-102.
  • [9] Luca F. Fibonacci and Lucas numbers with only one distinct digit. Portugaliae Mathematica 2000; 57 (2): 243-254.
  • [10] Marques D, Togbé A. On repdigits as product of consecutive Fibonacci numbers. Rendiconti dell’Istituto di Matematica dell’Universitá di Trieste University Studi Trieste 2012; 44: 393-397.
  • [11] Matveev EM. An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 2000; 64: 125-180. English translation in Izvestiya Mathematics 2000; 64: 1217-1269.
  • [12] Miles EPJr. Generalized Fibonacci numbers and associated matrices. American Mathematical Monthly 1960; 67: 745-752.
  • [13] Miller MD. Mathematical notes: on generalized Fibonacci numbers. American Mathematical Monthly 1971; 78: 1108-1109.
  • [14] Rayaguru SG, Panda GK. Repdigits as product of consecutive balancing and Lucas-balancing numbers. The Fibonacci Quarterly 2018; 56 (4): 319-324.
  • [15] Rayaguru SG, Panda GK. Repdigits as product of balancing and Lucas-balancing numbers with indices in arithmetic progressions. The Fibonacci Quarterly 2019; 57 (3): 231-237.
  • [16] Sanna C. The p-adic valuation of Lucas sequences. The Fibonacci Quarterly 2016; 54 (2): 118-124.
  • [17] Şiar Z., Keskin R., Repdigits as sums of two Lucas numbers, Applied Mathematics E-notes, 20 (2020); 33-38.
  • [18] Waldshmidt M. Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables. Berlin, Germany: Springer-Verlag Berlin Heidel-berg, 2000.
  • [19] Wolfram DA. Solving generalized Fibonacci recurrences. The Fibonacci Quarterly 1998; 36 (2): 129-145.