Extensions of the matrix-valued q−Sturm–Liouville operators

Extensions of the matrix-valued q−Sturm–Liouville operators

In this paper, we investigate the matrix-valued q−Sturm–Liouville problems. We establish an existence and uniqueness result. Later, we introduce the corresponding maximal and minimal operators for this system. Moreover, we give a criterion under which these operators are self-adjoint. Finally, we characterize extensions (maximal dissipative, maximal accumulative, and self-adjoint) of the minimal symmetric operator.

___

  • [1] Adıvar M, Bohner M. Spectral analysis of q−difference equations with spectral singularities. Mathematical and Computer Modelling 2006; 43 (7-8): 69 5-703. doi: 10.1016/j.mcm.2005.04.014
  • [2] Allahverdiev BP, Tuna H. An expansion theorem for q− Sturm–Liouville operators on the whole line. Turkish Journal of Mathematics 2018; 42: 1060-1071. doi: 10.3906/mat-1705-22
  • [3] Allahverdiev BP, Tuna H. Limit-point criteria for q−Sturm–Liouville equations. Quaestiones Mathematicae 2019; 42 (10): 1291-1299. doi: 10.2989/16073606.2018.1514541
  • [4] Allahverdiev BP, Tuna H. Qualitative spectral analysis of singular q−Sturm–Liouville operators. Bulletin of the Malaysian Mathematical Sciences Society 2020; 43: 1391. doi: 10.1007/s40840-019-00747-3
  • [5] Allahverdiev BP, Tuna H. Eigenfunction expansion in the singular case for q−Sturm–Liouville operators. Caspian Journal of Mathematical Sciences 2019; 8 (2): 91-102. doi: 10.22080/CJMS.2018.13943.1339
  • [6] Allakhverdiev BP. On extensions of symmetric Schrödinger operators with a matrix potential, Izvestiya Rossiĭskoĭ Akademii Nauk. Seriya Matematicheskaya 1995; 59: 19-54; English transl. Izvestiya: Mathematics 1995; 59: 45-62. doi: 10.1070/IM1995v059n01ABEH000002
  • [7] Annaby MH, Mansour ZS. q−Fractional Calculus and Equations. Lecture Notes in Mathematics. vol. 2056, Berlin, Germany: Springer-Verlag, 2012.
  • [8] Annaby MH, Mansour ZS. Basic Sturm–Liouville problems. Journal of Physics. A. Mathematical and Theoretical 2005; 38: 3775-3797. doi: 10.1088/0305-4470/38/17/005
  • [9] Aygar Y, Bairamov E. Jost solution and the spectral properties of the matrix-valued difference operators. Applied Mathematics and Computation 2012; 218 (3): 9676-9681. doi: 10.1016/j.amc.2012.02.081
  • [10] Aygar Y, Bohner M. Spectral analysis of a matrix-valued quantum-difference operator. Dynamic Systems and Applications 2016; 25: 1-9.
  • [11] Aygar Y, Bohner M. A Polynomial–Type Jost Solution and spectral properties of a self-adjoint quantum-difference operator. Complex Analysis and Operator Theory 2016; 10 (6): 1171-1180. doi: 10.1007/s11785-015-0463-x
  • [12] Aygar Y. A research on spectral analysis of a matrix quantum difference equations with spectral singularities. Quaestiones Mathematicae 2017; 40 (2): 245-249. doi: 10.2989/16073606.2017.1284911
  • [13] Bai̇ramov E, Cebesoy Ş. Spectral singularities of the matrix Schrödinger equations. Hacettepe Journal of Mathematics and Statistics 2016; 45 (4): 1007-1014. doi: 10.15672/HJMS.20164514275
  • [14] Bairamov E, Aygar Y, Cebesoy S. Spectral analysis of a self-adjoint matrix-valued discrete operator on the whole axis. Journal of Nonlinear Sciences and Applications 2016; 9 (6): 4257-4262.
  • [15] Bastard G, Brum JA. Electronic states in semi conductor heterostructures. IEEE Journal of Quantum Electronics 1986; 22: 1625-1644. doi: 10.1109/JQE.1986.1073186
  • [16] Bastard G. Wave mechanics applied to semi conductor hetero structures. Paris, Éditions de Physique: 1989.
  • [17] Beals R, Henkin GM, Novikova NN. The inverse boundary problem for the Rayleigh system. Journal of Mathematical Physics 1965; 36 (12): 6688-6708. doi: 10.1063/1.531182
  • [18] Bondarenko N. Spectral analysis for the matrix Sturm–Liouville operator on a finite interval. Tamkang Journal of Mathematics 2011; 42 (3): 305-327. doi: 10.5556/j.tkjm.42.2011.305-327
  • [19] Bondarenko N. Matrix Sturm–Liouville equation with a Bessel-type singularity on a finite interval. Analysis and Mathematical Physics 2017; 7 (1): 77-92. doi: 10.1007/s13324-016-0131-y
  • [20] Boutet de Monvel A, Shepelsky D. Inverse scattering problem for anisotropic media. Journal of Mathematical Physics 1995; 36 (7): 3443-3453. doi: 10.1063/1.530971
  • [21] Bruk VM. On a class of boundary –value problemswith a spectral parameter in the boundary conditions, Matematicheskiĭ Sbornik 1976; 100: 210-216. doi: 10.1070/SM1976v029n02ABEH003662
  • [22] Calkin JW. Abstract symmetric boundary conditions. Transactions of the American Mathematical Society 1939; 45 (3): 369-442.
  • [23] Chabanov VM. Recovering the M-channel Sturm–Liouville operator from M + 1 spectra. Journal of Mathematical Physics 2004; 45 (11): 4255-4260. doi: 10.1063/1.1794844
  • [24] Coskun C, Olgun M. Principal functions of non-selfadjoint matrix Sturm–Liouville equations. Journal of Computational and Applied Mathematics 2011; 235 (16): 4834-4838. doi: 10.1016/j.cam.2010.12.004
  • [25] Ernst T. The History of q−Calculus and a New Method. U. U. D. M. Report (2000): 16, ISSN1101-3591, Department of Mathematics, Uppsala University, 2000.
  • [26] Eryılmaz A, Tuna H. Spectral theory of dissipative q−Sturm–Liouville problems. Studia Scientiarum Mathematicarum Hungarica 2014; 51 (3): 366-383. doi: 10.1556/SScMath.51.2014.3.1289
  • [27] Gorbachuk ML. On spectral functions of a second order differential operator with operator coefficients. Ukrains’kyi Matematychnyi Zhurnal 1966; 18 (2): 3-21; English transl. American Mathematical Society Translations: Series 2 1968; 72: 177-202.
  • [28] Gorbachuk ML, Gorbachuk VI, Kochubei AN. The theory of extensions of symmetric operators and boundaryvalue problems for differential equations. Ukrains’kyi Matematychnyi Zhurnal 1989; 41: 1299-1312; English transl. in Ukrainian Mathematical Journal 1989; 41: 1117-1129. doi: 10.1007/BF01057246
  • [29] Gorbachuk ML, Gorbachuk VI. Boundary Value Problems for Operator Differential Equations, Naukova Dumka, Kiev, 1984; English transl. Birkhauser Verlag, 1991.
  • [30] Kac V, Cheung P. Quantum Calculus. Berlin, Germany: Springer-Verlag, 2002.
  • [31] Karahan D, Mamedov KhR. Sampling theory associated with q−Sturm–Liouville operator with discontinuity conditions. Journal of Contemporary Applied Mathematics 2020; 10 (2): 1-9.
  • [32] Kochubei AN. Extensions of symmetric operators and symmetric binary relations. Matematicheskie Zametki 1975; 17: 41-48; English transl. in Mathematical Notes 1975; 17: 25-28. doi: 10.1007/BF01093837
  • [33] Krall AM. Hilbert Space, Boundary Value Problems and Orthogonal Polynomials. Berlin, Germany: Birkhäuser Verlag, 2002.
  • [34] Krein MG. On the indeterminate case of the Sturm–Liouville boundaryvalue problem in the interval (0, ∞), Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 1952; 16: 292-324.
  • [35] Maksudov FG, Allahverdiev BP. On the extensions of Schrödinger operators with a matrix potentials, Doklady Akademii Nauk 1993; 332(1):18-20;English transl. Russian Academy of Sciences. Doklady. Mathematics 1994; 48 (2):240-243. doi: 10.1070/IM1995v059n01ABEH000002
  • [36] Malamud MM, Mogilevskiy VI. On extensions of dual pairs of operators. Dopovidi Natsional’noï Akademiï Nauk Ukraïny 1997; 1: 30-37.
  • [37] Mogilevskiy VI. On proper extensions of a singular differential operator in a space of vector functions. Dopovidi Natsional’noï Akademiï Nauk Ukraïny 1994; 9: 29-33 (in Russian with an English abstract) . doi: 10.1007/BF01059050
  • [38] Naimark MA. Linear Differential Operators. 2nd ed. Moscow, USSR: Nauka, 1969 (in Russian).
  • [39] Rofe-Beketov FS. Self-adjoint extensions of differential operators in a space of vector valued functions, Doklady Akademii Nauk SSSR 1969; 184: 1034-1037; English transl. in Soviet Mathematics. Doklady 1969; 10:188-192.
  • [40] Shi YM. Spectral theory of discrete linear Hamiltonian systems. Journal of Mathematical Analysis and Applications 2004; 289 (2): 554-570. doi: 10.1016/j.jmaa.2003.08.039
  • [41] Tuna H, Eryılmaz A. Completeness of the system of root functions of q−Sturm–Liouville operators. Mathematical Communications 2014; 19 (1): 65-73.
  • [42] Tuna H, Eryılmaz A. On q−Sturm–Liouville operators with eigenvalue parameter contained in the boundary conditions. Dynamic Systems and Applications 2015; 24 (4): 491-501.
  • [43] Tuna H, Eryılmaz A. Livšic’s theorem for q− Sturm–Liouville operators. Studia Scientiarum Mathematicarum Hungarica 2016; 53 (4): 512-524. doi: 10.1556/012.2016.53.4.1348
  • [44] von Neumann J. Allgemeine Eigenwertheorie Hermitischer Functionaloperatoren. Mathematische Annalen 1929; 102: 49-131 (in German). doi: 10.1007/BF01782338
  • [45] Yardimci S. A note on the spectral singularities of non-selfadjoint matrix-valued difference operators. Journal of Computational and Applied Mathematics 2010; 234: 3039-3042. doi: 10.1016/j.cam.2010.04.017
  • [46] Yurko V. Inverse problems for the matrix Sturm–Liouville equation on a finite interval. Inverse Problems 2006; 22: 1139-1149. doi: 10.1088/0266-5611/22/4/002
  • [47] Zettl A. Sturm–Liouville Theory. Mathematical Surveys and Monographs. vol. 121. Providence, Rhode Island, USA: American Mathematical Society, 2005.